![]() |
![]() |
Your cart is empty |
||
Showing 1 - 25 of 57 matches in All Departments
Recent years have witnessed a growing importance of quantitative methods in both financial research and industry. This development requires the use of advanced techniques on a theoretical and applied level, especially when it comes to the quantification of risk and the valuation of modern financial products. Applied Quantitative Finance (2nd edition) provides a comprehensive and state-of-the-art treatment of cutting-edge topics and methods. It provides solutions to and presents theoretical developments in many practical problems such as risk management, pricing of credit derivatives, quantification of volatility and copula modelling. The synthesis of theory and practice supported by computational tools is reflected in the selection of topics as well as in a finely tuned balance of scientific contributions on practical implementation and theoretical concepts. This linkage between theory and practice offers theoreticians insights into considerations of applicability and, vice versa, provides practitioners comfortable access to new techniques in quantitative finance. Themes that are dominant in current research and which are presented in this book include among others the valuation of Collaterized Debt Obligations (CDOs), the high-frequency analysis of market liquidity, the pricing of Bermuda options and realized volatility. All Quantlets for the calculation of the given examples are downloadable from the Springer web pages.
The complexity of today's statistical data calls for modern mathematical tools. Many fields of science make use of mathematical statistics and require continuous updating on statistical technologies. Practice makes perfect, since mastering the tools makes them applicable. Our book of exercises and solutions offers a wide range of applications and numerical solutions based on R. In modern mathematical statistics, the purpose is to provide statistics students with a number of basic exercises and also an understanding of how the theory can be applied to real-world problems. The application aspect is also quite important, as most previous exercise books are mostly on theoretical derivations. Also we add some problems from topics often encountered in recent research papers. The book was written for statistics students with one or two years of coursework in mathematical statistics and probability, professors who hold courses in mathematical statistics, and researchers in other fields who would like to do some exercises on math statistics.
Any financial asset that is openly traded has a market price. Except for extreme market conditions, market price may be more or less than a fair value. Fair value is likely to be some complicated function of the current intrinsic value of tangible or intangible assets underlying the claim and our assessment of the characteristics of the underlying assets with respect to the expected rate of growth, future dividends, volatility, and other relevant market factors. Some of these factors that affect the price can be measured at the time of a transaction with reasonably high accuracy. Most factors, however, relate to expectations about the future and to subjective issues, such as current management, corporate policies and market environment, that could affect the future financial performance of the underlying assets. Models are thus needed to describe the stochastic factors and environment, and their implementations inevitably require computational finance tools.
Visualizing the data is an essential part of any data analysis. Modern computing developments have led to big improvements in graphic capabilities and there are many new possibilities for data displays. This new volume in the series Springer Handbooks of Computational Statistics gives an overview of modern data visualization methods, both in theory and practice. There are definitive chapters on modern graphical tools such as mosaic plots, parallel coordinate plots and linked views. There are chapters dedicated to graphical methodology for particular areas of statistics, for example Bayesian analysis, genomic data and cluster analysis, as well as chapters on software for graphics. Specialists from all over the world have contributed papers on their areas of expertise.
The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.
This book covers all the topics found in introductory descriptive statistics courses, including simple linear regression and time series analysis, the fundamentals of inferential statistics (probability theory, random sampling and estimation theory), and inferential statistics itself (confidence intervals, testing). Each chapter starts with the necessary theoretical background, which is followed by a variety of examples. The core examples are based on the content of the respective chapter, while the advanced examples, designed to deepen students' knowledge, also draw on information and material from previous chapters. The enhanced online version helps students grasp the complexity and the practical relevance of statistical analysis through interactive examples and is suitable for undergraduate and graduate students taking their first statistics courses, as well as for undergraduate students in non-mathematical fields, e.g. economics, the social sciences etc.
Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. To do so, it covers statistical methods for high-dimensional problems, algorithmic designs, computation tools, analysis flows and the software-hardware co-designs that are needed to support insightful discoveries from big data. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics. Readers should have a solid background in statistics and computer science.
This volume provides practical solutions and introduces recent theoretical developments in risk management, pricing of credit derivatives, quantification of volatility and copula modeling. This third edition is devoted to modern risk analysis based on quantitative methods and textual analytics to meet the current challenges in banking and finance. It includes 14 new contributions and presents a comprehensive, state-of-the-art treatment of cutting-edge methods and topics, such as collateralized debt obligations, the high-frequency analysis of market liquidity, and realized volatility. The book is divided into three parts: Part 1 revisits important market risk issues, while Part 2 introduces novel concepts in credit risk and its management along with updated quantitative methods. The third part discusses the dynamics of risk management and includes risk analysis of energy markets and for cryptocurrencies. Digital assets, such as blockchain-based currencies, have become popular b ut are theoretically challenging when based on conventional methods. Among others, it introduces a modern text-mining method called dynamic topic modeling in detail and applies it to the message board of Bitcoins. The unique synthesis of theory and practice supported by computational tools is reflected not only in the selection of topics, but also in the fine balance of scientific contributions on practical implementation and theoretical concepts. This link between theory and practice offers theoreticians insights into considerations of applicability and, vice versa, provides practitioners convenient access to new techniques in quantitative finance. Hence the book will appeal both to researchers, including master and PhD students, and practitioners, such as financial engineers. The results presented in the book are fully reproducible and all quantlets needed for calculations are provided on an accompanying website. The Quantlet platform quantlet.de, quantlet.com, quantlet.org is an integrated QuantNet environment consisting of different types of statistics-related documents and program codes. Its goal is to promote reproducibility and offer a platform for sharing validated knowledge native to the social web. QuantNet and the corresponding Data-Driven Documents-based visualization allows readers to reproduce the tables, pictures and calculations inside this Springer book.
Now in its fifth edition, this book offers a detailed yet concise introduction to the growing field of statistical applications in finance. The reader will learn the basic methods for evaluating option contracts, analyzing financial time series, selecting portfolios and managing risks based on realistic assumptions about market behavior. The focus is both on the fundamentals of mathematical finance and financial time series analysis, and on applications to specific problems concerning financial markets, thus making the book the ideal basis for lectures, seminars and crash courses on the topic. All numerical calculations are transparent and reproducible using quantlets. For this new edition the book has been updated and extensively revised and now includes several new aspects such as neural networks, deep learning, and crypto-currencies. Both R and Matlab code, together with the data, can be downloaded from the book's product page and the Quantlet platform. The Quantlet platform quantlet.de, quantlet.com, quantlet.org is an integrated QuantNet environment consisting of different types of statistics-related documents and program codes. Its goal is to promote reproducibility and offer a platform for sharing validated knowledge native to the social web. QuantNet and the corresponding Data-Driven Documents-based visualization allow readers to reproduce the tables, pictures and calculations inside this Springer book. "This book provides an excellent introduction to the tools from probability and statistics necessary to analyze financial data. Clearly written and accessible, it will be very useful to students and practitioners alike." Yacine Ait-Sahalia, Otto Hack 1903 Professor of Finance and Economics, Princeton University
This book covers all the topics found in introductory descriptive statistics courses, including simple linear regression and time series analysis, the fundamentals of inferential statistics (probability theory, random sampling and estimation theory), and inferential statistics itself (confidence intervals, testing). Each chapter starts with the necessary theoretical background, which is followed by a variety of examples. The core examples are based on the content of the respective chapter, while the advanced examples, designed to deepen students' knowledge, also draw on information and material from previous chapters. The enhanced online version helps students grasp the complexity and the practical relevance of statistical analysis through interactive examples and is suitable for undergraduate and graduate students taking their first statistics courses, as well as for undergraduate students in non-mathematical fields, e.g. economics, the social sciences etc.
This textbook on computational statistics presents tools and concepts of univariate and multivariate statistical data analysis with a strong focus on applications and implementations in the statistical software R. It covers mathematical, statistical as well as programming problems in computational statistics and contains a wide variety of practical examples. In addition to the numerous R sniplets presented in the text, all computer programs (quantlets) and data sets to the book are available on GitHub and referred to in the book. This enables the reader to fully reproduce as well as modify and adjust all examples to their needs. The book is intended for advanced undergraduate and first-year graduate students as well as for data analysts new to the job who would like a tour of the various statistical tools in a data analysis workshop. The experienced reader with a good knowledge of statistics and programming might skip some sections on univariate models and enjoy the various ma thematical roots of multivariate techniques. The Quantlet platform quantlet.de, quantlet.com, quantlet.org is an integrated QuantNet environment consisting of different types of statistics-related documents and program codes. Its goal is to promote reproducibility and offer a platform for sharing validated knowledge native to the social web. QuantNet and the corresponding Data-Driven Documents-based visualization allows readers to reproduce the tables, pictures and calculations inside this Springer book.
​The complexity of today’s statistical data calls for modern mathematical tools.  Many fields of science make use of mathematical statistics and require continuous updating on statistical technologies. Practice makes perfect,  since mastering the tools makes them applicable.  Our book of exercises and solutions offers a wide range of applications and numerical solutions based on R. In modern mathematical statistics, the purpose is to provide statistics students with a number of basic exercises and also an understanding of how the theory can be applied to real-world problems. The application aspect is also quite important, as most previous exercise books are mostly on theoretical derivations. Also we add some problems from topics often encountered in recent research papers. The book was written for statistics students with one or two years of coursework in mathematical statistics and probability, professors who hold courses in mathematical statistics, and researchers in other fields who would like to do some exercises on math statistics.
Any financial asset that is openly traded has a market price. Except for extreme market conditions, market price may be more or less than a "fair" value. Fair value is likely to be some complicated function of the current intrinsic value of tangible or intangible assets underlying the claim and our assessment of the characteristics of the underlying assets with respect to the expected rate of growth, future dividends, volatility, and other relevant market factors. Some of these factors that affect the price can be measured at the time of a transaction with reasonably high accuracy. Most factors, however, relate to expectations about the future and to subjective issues, such as current management, corporate policies and market environment, that could affect the future financial performance of the underlying assets. Models are thus needed to describe the stochastic factors and environment, and their implementations inevitably require computational finance tools.
Visualizing the data is an essential part of any data analysis. Modern computing developments have led to big improvements in graphic capabilities and there are many new possibilities for data displays. This book gives an overview of modern data visualization methods, both in theory and practice. It details modern graphical tools such as mosaic plots, parallel coordinate plots, and linked views. Coverage also examines graphical methodology for particular areas of statistics, for example Bayesian analysis, genomic data and cluster analysis, as well software for graphics.
This book constitutes the proceedings of the 27th International Conference on Architecture of Computing Systems, ARCS 2014, held in Lubeck, Germany, in February 2014. The 20 papers presented in this volume were carefully reviewed and selected from 44 submissions. They are organized in topical sections named: parallelization: applications and methods; self-organization and trust; system design; system design and sensor systems; and virtualization: I/O, memory, cloud; dependability: safety, security, and reliability aspects."
Practice makes perfect. Therefore the best method of mastering models is working with them. This book contains a large collection of exercises and solutions which will help explain the statistics of financial markets. These practical examples are carefully presented and provide computational solutions to specific problems, all of which are calculated using R and Matlab. This study additionally looks at the concept of corresponding Quantlets, the name given to these program codes and which follow the name scheme SFSxyz123. The book is divided into three main parts, in which option pricing, time series analysis and advanced quantitative statistical techniques in finance is thoroughly discussed. The authors have overall successfully created the ideal balance between theoretical presentation and practical challenges.
Statistical Tools for Finance and Insurance" "presents ready-to-use solutions, theoretical developments and method construction for many practical problems in quantitative finance and insurance. Written by practitioners and leading academics in the field, this book offers a unique combination of topics from which every market analyst and risk manager will benefit. Features of the significantly enlarged and revised second
edition: Offers insight into new methods and the applicability of
the stochastic technologyProvides the tools, instruments and
(online) algorithms for recent techniques in quantitative finance
and modern treatments in insurance calculationsCovers topics such
as
Copulas are mathematical objects that fully capture the dependence structure among random variables and hence offer great flexibility in building multivariate stochastic models. Since their introduction in the early 50's, copulas have gained considerable popularity in several fields of applied mathematics, such as finance, insurance and reliability theory. Today, they represent a well-recognized tool for market and credit models, aggregation of risks, portfolio selection, etc. This book is divided into two main parts: Part I - "Surveys" contains 11 chapters that provide an up-to-date account of essential aspects of copula models. Part II - "Contributions" collects the extended versions of 6 talks selected from papers presented at the workshop in Warsaw.
TheARCSseriesofconferenceshasover30yearsoftraditionreportingtop-notch results in computer architecture and operating systems research. It is organized by the special interest group on "Computer and System Architecture"of the GI (Gesellschaft fur ] Informatik e.V.) and ITG (Informationstechnische Gesellschaft imVDE InformationTechnologySociety).In2010, ARCSwashostedbyLeibniz University Hannover. This year's special focus was on heterogeneous systems. The conference's topics comprised design aspects of multi-cores and memory systems, adaptive system architectures such as recon?gurable systems in hardware and software, customization and application-speci?c accelerators in heterogeneous archit- tures, organic and autonomic computing, energy-awareness, system aspects of ubiquitous and pervasive computing, and embedded systems. Thecallforpapersattractedabout55submissionsfromallaroundtheworld. Each submission was assigned to at least three members of the Program C- mittee for review. The Program Committee decided to accept 20 papers, which were arranged in seven sessions. The accepted papers are from Belgium, China, France, Germany, Italy, Spain, Turkey, and the UK. Two keynotes on hetero- neous systems complemented the strong technical program."
The authors present tools and concepts of multivariate data analysis by means of exercises and their solutions. The first part is devoted to graphical techniques. The second part deals with multivariate random variables and presents the derivation of estimators and tests for various practical situations. The last part introduces a wide variety of exercises in applied multivariate data analysis. The book demonstrates the application of simple calculus and basic multivariate methods in real life situations. It contains altogether 234 solved exercises which can assist a university teacher in setting up a modern multivariate analysis course. All computer-based exercises are available in the R or XploRe languages. The corresponding libraries are downloadable from the Springer link web pages and from the authora (TM)s home pages.
This book constitutes the proceedings of the 33rd International Conference on Architecture of Computing Systems, ARCS 2020, held in Aachen, Germany, in May 2020.* The 12 full papers in this volume were carefully reviewed and selected from 33 submissions. 6 workshop papers are also included. ARCS has always been a conference attracting leading-edge research outcomes in Computer Architecture and Operating Systems, including a wide spectrum of topics ranging from embedded and real-time systems all the way to large-scale and parallel systems. The selected papers focus on concepts and tools for incorporating self-adaptation and self-organization mechanisms in high-performance computing systems. This includes upcoming approaches for runtime modifications at various abstraction levels, ranging from hardware changes to goal changes and their impact on architectures, technologies, and languages. *The conference was canceled due to the COVID-19 pandemic.
Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. To do so, it covers statistical methods for high-dimensional problems, algorithmic designs, computation tools, analysis flows and the software-hardware co-designs that are needed to support insightful discoveries from big data. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics. Readers should have a solid background in statistics and computer science.
This book constitutes the proceedings of the 30th International Conference on Architecture of Computing Systems, ARCS 2017, held in Vienna, Austria, in April 2017. The 19 full papers presented in this volume were carefully reviewed and selected from 42 submissions. They were organized in topical sections entitled: resilience; accelerators; performance; memory systems; parallelism and many-core; scheduling; power/energy. |
![]() ![]() You may like...
Moomin: Cover of Finn Family Moomintroll…
Flame Tree Studio
Notebook / blank book
The Fairy Tale Art of W. Heath Robinson…
Pook Press, W.Heath Robinson
Hardcover
R1,497
Discovery Miles 14 970
J. R. R. Tolkien - Artist and…
Wayne G. Hammond, Christina Scull
Paperback
Moomin: Dangerous Journey (Foiled Blank…
Flame Tree Studio
Notebook / blank book
|