![]() |
![]() |
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
This book gives a comprehensive introduction to Universal Algebraic Logic. The three main themes are (i) universal logic and the question of what logic is, (ii) duality theories between the world of logics and the world of algebra, and (iii) Tarskian algebraic logic proper including algebras of relations of various ranks, cylindric algebras, relation algebras, polyadic algebras and other kinds of algebras of logic. One of the strengths of our approach is that it is directly applicable to a wide range of logics including not only propositional logics but also e.g. classical first order logic and other quantifier logics. Following the Tarskian tradition, besides the connections between logic and algebra, related logical connections with geometry and eventually spacetime geometry leading up to relativity are also part of the perspective of the book. Besides Tarskian algebraizations of logics, category theoretical perspectives are also touched upon. This book, apart from being a monograph containing state of the art results in algebraic logic, can be used as the basis for a number of different courses intended for both novices and more experienced students of logic, mathematics, or philosophy. For instance, the first two chapters can be used in their own right as a crash course in Universal Algebra.
This book gathers together a colorful set of problems on classical Mathematical Logic, selected from over 30 years of teaching. The initial chapters start with problems from supporting fields, like set theory (ultrafilter constructions), full-information game theory (strategies), automata, and recursion theory (decidability, Kleene's theorems). The work then advances toward propositional logic (compactness and completeness, resolution method), followed by first-order logic, including quantifier elimination and the Ehrenfeucht- Fraisse game; ultraproducts; and examples for axiomatizability and non-axiomatizability. The Arithmetic part covers Robinson's theory, Peano's axiom system, and Goedel's incompleteness theorems. Finally, the book touches universal graphs, tournaments, and the zero-one law in Mathematical Logic. Instructors teaching Mathematical Logic, as well as students who want to understand its concepts and methods, can greatly benefit from this work. The style and topics have been specially chosen so that readers interested in the mathematical content and methodology could follow the problems and prove the main theorems themselves, including Goedel's famous completeness and incompleteness theorems. Examples of applications on axiomatizability and decidability of numerous mathematical theories enrich this volume.
|
![]() ![]() You may like...
From Persecution to Toleration - The…
Ole Peter Grell, Jonathan I. Israel, …
Hardcover
R4,767
Discovery Miles 47 670
NKJV, Personal Size Reference Bible…
Thomas Nelson
Leather / fine binding
Tudor History - A Captivating Guide to…
Captivating History
Hardcover
|