Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book combines semi-physical simulation technology with an Internet of Things (IOT) application system based on novel mathematical methods such as the Fisher matrix, artificial neural networks, thermodynamic analysis, support vector machines, and image processing algorithms. The dynamic testing and semi-physical verification of the theory and application were conducted for typical IOT systems such as RFID systems, Internet of Vehicles systems, and two-dimensional barcode recognition systems. The findings presented are of great scientific significance and have wide application potential for solving bottlenecks in the development of RFID technology and IOT engineering. The book is a valuable resource for postgraduate students in fields such as computer science and technology, control science and engineering, and information science. Moreover, it is a useful reference resource for researchers in IOT and RFID-related industries, logistics practitioners, and system integrators.
This book highlights the innovative applications of electromagnetics, optics, thermodynamics theories in creating methods for physical-layer collision prevention- "physical anti-collision" in radio frequency identification (RFID) systems. Using engineering mathematical methods as the core of detection and control algorithm design, it proposes semi-physical verification and detection techniques to the dynamic performance testing in RFID systems. The book also introduces the methods to build semi-physical hardware platforms using photoelectric sensing technology. The book provides valuable ideas to the applications of Internet of Things (IOT) systems in smart logistics, car networking, food traceability, anti-counterfeiting and other livelihood fields. It is worth reading for all researchers in IOT and optoelectronic engineering related industries.
This book highlights the innovative applications of electromagnetics, optics, thermodynamics theories in creating methods for physical-layer collision prevention- "physical anti-collision" in radio frequency identification (RFID) systems. Using engineering mathematical methods as the core of detection and control algorithm design, it proposes semi-physical verification and detection techniques to the dynamic performance testing in RFID systems. The book also introduces the methods to build semi-physical hardware platforms using photoelectric sensing technology. The book provides valuable ideas to the applications of Internet of Things (IOT) systems in smart logistics, car networking, food traceability, anti-counterfeiting and other livelihood fields. It is worth reading for all researchers in IOT and optoelectronic engineering related industries.
This book combines semi-physical simulation technology with an Internet of Things (IOT) application system based on novel mathematical methods such as the Fisher matrix, artificial neural networks, thermodynamic analysis, support vector machines, and image processing algorithms. The dynamic testing and semi-physical verification of the theory and application were conducted for typical IOT systems such as RFID systems, Internet of Vehicles systems, and two-dimensional barcode recognition systems. The findings presented are of great scientific significance and have wide application potential for solving bottlenecks in the development of RFID technology and IOT engineering. The book is a valuable resource for postgraduate students in fields such as computer science and technology, control science and engineering, and information science. Moreover, it is a useful reference resource for researchers in IOT and RFID-related industries, logistics practitioners, and system integrators.
|
You may like...
|