![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
Tauberian operators were introduced to investigate a problem in summability theory from an abstract point of view. Since that introduction, they have made a deep impact on the isomorphic theory of Banach spaces. In fact, these operators have been useful in several contexts of Banach space theory that have no apparent or obvious connections. For instance, they appear in the famous factorization of Davis, Figiel, Johnson and Pelczynski [49] (henceforth the DFJP factorization), in the study of exact sequences of Banach spaces [174], in the solution of certain summability problems of tauberian type [63, 115], in the problem of the equivalence between the Krein-Milman property and the Radon-Nikodym property [151], in certain sequels of James' characterization of reflexive Banach spaces [135], in the construction of hereditarily indecomposable Banach spaces [13], in the extension of the principle of local reflexivity to operators [27], in the study of certain Calkin algebras associated with the weakly compact operators [16], etc. Since the results concerning tauberian operators appear scattered throughout the literature, in this book we give a unified presentation of their properties and their main applications in functional analysis. We also describe some questions about tauberian operators that remain open. This book has six chapters and an appendix. In Chapter 1 we show how the concept of tauberian operator was introduced in the study of a classical problem in summability theory - the characterization of conservative matrices that sum no bounded divergent sequences - by means of functional analysis techniques. One of those solutions is due to Crawford [45], who considered the second conjugate of the operator associated with one of those matrices.
Fractional-order calculus dates to the 19th century but has been resurrected as a prevalent research subject due to its provision of more adequate and realistic descriptions of physical aspects within the science and engineering fields. What was once a classical form of mathematics is currently being reintroduced as a new modeling technique that engineers and scientists are finding modern uses for. There is a need for research on all facets of these fractional-order systems and studies of its potential applications. Advanced Applications of Fractional Differential Operators to Science and Technology provides emerging research exploring the theoretical and practical aspects of novel fractional modeling and related dynamical behaviors as well as its applications within the fields of physical sciences and engineering. Featuring coverage on a broad range of topics such as chaotic dynamics, ecological models, and bifurcation control, this book is ideally designed for engineering professionals, mathematicians, physicists, analysts, researchers, educators, and students seeking current research on fractional calculus and other applied mathematical modeling techniques.
The second volume of the two volumes book is dedicated to various extensions and generalizations of Dyadic (Walsh) analysis and related applications. Considered are dyadic derivatives on Vilenkin groups and various other Abelian and finite non-Abelian groups. Since some important results were developed in former Soviet Union and China, we provide overviews of former work in these countries. Further, we present translations of three papers that were initially published in Chinese. The presentation continues with chapters written by experts in the area presenting discussions of applications of these results in specific tasks in the area of signal processing and system theory. Efficient computing of related differential operators on contemporary hardware, including graphics processing units, is also considered, which makes the methods and techniques of dyadic analysis and generalizations computationally feasible. The volume 2 of the book ends with a chapter presenting open problems pointed out by several experts in the area.
The behavior of materials at the nanoscale is a key aspect of modern nanoscience and nanotechnology. This book presents rigorous mathematical techniques showing that some very useful phenomenological properties which can be observed at the nanoscale in many nonlinear reaction-diffusion processes can be simulated and justified mathematically by means of homogenization processes when a certain critical scale is used in the corresponding framework.
This book provides a comprehensive guide to analyzing and solving optimal design problems in continuous media by means of the so-called sub-relaxation method. Though the underlying ideas are borrowed from other, more classical approaches, here they are used and organized in a novel way, yielding a distinct perspective on how to approach this kind of optimization problems. Starting with a discussion of the background motivation, the book broadly explains the sub-relaxation method in general terms, helping readers to grasp, from the very beginning, the driving idea and where the text is heading. In addition to the analytical content of the method, it examines practical issues like optimality and numerical approximation. Though the primary focus is on the development of the method for the conductivity context, the book's final two chapters explore several extensions of the method to other problems, as well as formal proofs. The text can be used for a graduate course in optimal design, even if the method would require some familiarity with the main analytical issues associated with this type of problems. This can be addressed with the help of the provided bibliography.
This is a collection of surveys and research papers written by distinguished Chinese mathematicians from within the People's Republic of China and expatriates. The book covers topics in analytic function spaces of several complex variables, integral transforms, harmonic analysis on classical Lie groups and manifolds, LP- estimates of the Cauchy-Riemann equations and wavelet transforms. The reader will be able to trace the influence of the late Professor Loo-keng Hua's ideas and methods on research into harmonic analysis on classical domains and the theory of functions of several complex variables.
This new approach to real analysis stresses the use of the subject with respect to applications, i.e., how the principles and theory of real analysis can be applied in a variety of settings in subjects ranging from Fourier series and polynomial approximation to discrete dynamical systems and nonlinear optimization. Users will be prepared for more intensive work in each topic through these applications and their accompanying exercises. This book is appropriate for math enthusiasts with a prior knowledge of both calculus and linear algebra.
Examining recent mathematical developments in the study of Fredholm operators, spectral theory and block operator matrices, with a rigorous treatment of classical Riesz theory of polynomially-compact operators, this volume covers both abstract and applied developments in the study of spectral theory. These topics are intimately related to the stability of underlying physical systems and play a crucial role in many branches of mathematics as well as numerous interdisciplinary applications. By studying classical Riesz theory of polynomially compact operators in order to establish the existence results of the second kind operator equations, this volume will assist the reader working to describe the spectrum, multiplicities and localization of the eigenvalues of polynomially-compact operators.
This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincare, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds. "
In 1917, Johann Radon published his fundamental work, where he introduced what is now called the Radon transform. Including important contributions by several experts, this book reports on ground-breaking developments related to the Radon transform throughout these years, and also discusses novel mathematical research topics and applications for the next century.
This volume includes several invited lectures given at the International Workshop "Analysis, Partial Differential Equations and Applications," held at the Mathematical Department of Sapienza University of Rome, on the occasion of the 70th birthday of Vladimir G. Maz'ya, a renowned mathematician and one of the main experts in the field of pure and applied analysis. The book aims at spreading the seminal ideas of Maz'ya to a larger audience in faculties of sciences and engineering. In fact, all articles were inspired by previous works of Maz'ya in several frameworks, including classical and contemporary problems connected with boundary and initial value problems for elliptic, hyperbolic and parabolic operators, Schrodinger-type equations, mathematical theory of elasticity, potential theory, capacity, singular integral operators, p-Laplacians, functional analysis, and approximation theory. Maz'ya is author of more than 450 papers and 20 books. In his long career he obtained many astonishing and frequently cited results in the theory of harmonic potentials on non-smooth domains, potential and capacity theories, spaces of functions with bounded variation, maximum principle for higher-order elliptic equations, Sobolev multipliers, approximate approximations, etc. The topics included in this volume will be particularly useful to all researchers who are interested in achieving a deeper understanding of the large expertise of Vladimir Maz'ya."
"Nonconvex Optimal Control and Variational Problems "is an important contribution to the existing literature in the field and is devoted to the presentation of progress made in the last 15 years of research in the area of optimal control and the calculus of variations. This volume contains a number of results concerning well-posedness of optimal control and variational problems, nonoccurrence of the Lavrentiev phenomenon for optimal control and variational problems, and turnpike properties of approximate solutions of variational problems. Chapter 1 contains an introduction as well as examples of select topics. Chapters 2-5 consider the well-posedness condition using fine tools of general topology and porosity. Chapters 6-8 are devoted to the nonoccurrence of the Lavrentiev phenomenon and contain original results. Chapter 9 focuses on infinite-dimensional linear control problems, and Chapter 10 deals with good functions and explores new understandings on the questions of optimality and variational problems. Finally, Chapters 11-12 are centered around the turnpike property, a particular area of expertise for the author. This volume is intended for mathematicians, engineers, and scientists interested in the calculus of variations, optimal control, optimization, and applied functional analysis, as well as both undergraduate and graduate students specializing in those areas. The text devoted to Turnpike properties may be of particular interest to the economics community."
Piezoelectricity has been a steadily growing field, with recent advances made by researchers from applied physics, acoustics, materials science, and engineering. This collective work presents a comprehensive treatment of selected advanced topics in the subject. The book is written for an intermediate graduate level and is intended for researchers, mechanical engineers, and applied mathematicians interested in the advances and new applications in piezoelectricity.
This monograph presents some theoretical and computational aspects of the parameterization method for invariant manifolds, focusing on the following contexts: invariant manifolds associated with fixed points, invariant tori in quasi-periodically forced systems, invariant tori in Hamiltonian systems and normally hyperbolic invariant manifolds. This book provides algorithms of computation and some practical details of their implementation. The methodology is illustrated with 12 detailed examples, many of them well known in the literature of numerical computation in dynamical systems. A public version of the software used for some of the examples is available online. The book is aimed at mathematicians, scientists and engineers interested in the theory and applications of computational dynamical systems.
The book treats the theory of attractors for non-autonomous dynamical systems. The aim of the book is to give a coherent account of the current state of the theory, using the framework of processes to impose the minimum of restrictions on the nature of the non-autonomous dependence. The book is intended as an up-to-date summary of the field, but much of it will be accessible to beginning graduate students. Clear indications will be given as to which material is fundamental and which is more advanced, so that those new to the area can quickly obtain an overview, while those already involved can pursue the topics we cover more deeply.
Various general techniques have been developed for control and systems problems, many of which involve indirect methods. Because these indirect methods are not always effective, alternative approaches using direct methods are of particular interest and relevance given the advances of computing in recent years.The focus of this book, unique in the literature, is on direct methods, which are concerned with finding actual solutions to problems in control and systems, often algorithmic in nature. Throughout the work, deterministic and stochastic problems are examined from a unified perspective and with considerable rigor. Emphasis is placed on the theoretical basis of the methods and their potential utility in a broad range of control and systems problems.The book is an excellent reference for graduate students, researchers, applied mathematicians, and control engineers and may be used as a textbook for a graduate course or seminar on direct methods in control.
There is no recent elementary introduction to the theory of discrete dynamical systems that stresses the topological background of the topic. This book fills this gap: it deals with this theory as 'applied general topology'. We treat all important concepts needed to understand recent literature. The book is addressed primarily to graduate students. The prerequisites for understanding this book are modest: a certain mathematical maturity and course in General Topology are sufficient.
This book contains a first systematic study of compressible fluid flows subject to stochastic forcing. The bulk is the existence of dissipative martingale solutions to the stochastic compressible Navier-Stokes equations. These solutions are weak in the probabilistic sense as well as in the analytical sense. Moreover, the evolution of the energy can be controlled in terms of the initial energy. We analyze the behavior of solutions in short-time (where unique smooth solutions exists) as well as in the long term (existence of stationary solutions). Finally, we investigate the asymptotics with respect to several parameters of the model based on the energy inequality. Contents Part I: Preliminary results Elements of functional analysis Elements of stochastic analysis Part II: Existence theory Modeling fluid motion subject to random effects Global existence Local well-posedness Relative energy inequality and weak-strong uniqueness Part III: Applications Stationary solutions Singular limits
This unique book provides a collection of more than 200 mathematical problems and their detailed solutions, which contain very useful tips and skills in real analysis. Each chapter has an introduction, in which some fundamental definitions and propositions are prepared. This also contains many brief historical comments on some significant mathematical results in real analysis together with useful references.Problems and Solutions in Real Analysis may be used as advanced exercises by undergraduate students during or after courses in calculus and linear algebra. It is also useful for graduate students who are interested in analytic number theory. Readers will also be able to completely grasp a simple and elementary proof of the prime number theorem through several exercises. The book is also suitable for non-experts who wish to understand mathematical analysis.
Since the early eighties, Ali Suleyman Ustunelhas beenone of the
main contributors to the field of Malliavin calculus. In a workshop
held in Paris, June 2010 several prominent researchers gave
exciting talks in honor of his 60th birthday. The present volume
includes scientific contributions from this workshop.
This two-volume monograph presents new methods of construction of global asymptotics of solutions to nonlinear equations with small parameter. These allow one to match the asymptotics of various properties with each other in transition regions and to get unified formulas for the connection of characteristic parameters of approximate solutions. This approach underlies modern asymptotic methods and gives a deep insight into crucial nonlinear phenomena in the natural sciences. These include the outset of chaos in dynamical systems, incipient solitary and shock waves, oscillatory processes in crystals, engineering applications, and quantum systems. Apart from being of independent interest, such approximate solutions serve as a foolproof basis for testing numerical algorithms. This first volume presents asymptotic methods in oscillation and resonance problems described by ordinary differential equations, whereby the second volume will be devoted to applications of asymptotic methods in waves and boundary value problems. Contents Asymptotic expansions and series Asymptotic methods for solving nonlinear equations Nonlinear oscillator in potential well Autoresonances in nonlinear systems Asymptotics for loss of stability Systems of coupled oscillators
Initial training in pure and applied sciences tends to present problem-solving as the process of elaborating explicit closed-form solutions from basic principles, and then using these solutions in numerical applications. This approach is only applicable to very limited classes of problems that are simple enough for such closed-form solutions to exist. Unfortunately, most real-life problems are too complex to be amenable to this type of treatment. "Numerical Methods a Consumer Guide "presents methods for dealing with them. Shifting the paradigm from formal calculus to numerical computation, the text makes it possible for the reader to . discover how to escape the dictatorship of those particular cases that are simple enough to receive a closed-form solution, and thus gain the ability to solve complex, real-life problems; . understand the principles behind recognized algorithms used in state-of-the-art numerical software; . learn the advantages and limitations of these algorithms, to facilitate the choice of which pre-existing bricks to assemble for solving a given problem; and . acquire methods that allow a critical assessment of numerical results. "Numerical Methods a Consumer Guide "will be of interest to engineers and researchers who solve problems numerically with computers or supervise people doing so, and to students of both engineering and applied mathematics. "
This book, based on a graduate course given by the authors, is a pedagogic and self-contained introduction to the renormalization group with special emphasis on the functional renormalization group. The functional renormalization group is a modern formulation of the Wilsonian renormalization group in terms of formally exact functional differential equations for generating functionals. In Part I the reader is introduced to the basic concepts of the renormalization group idea, requiring only basic knowledge of equilibrium statistical mechanics. More advanced methods, such as diagrammatic perturbation theory, are introduced step by step. Part II then gives a self-contained introduction to the functional renormalization group. After a careful definition of various types of generating functionals, the renormalization group flow equations for these functionals are derived. This procedure is shown to encompass the traditional method of the mode elimination steps of the Wilsonian renormalization group procedure. Then, approximate solutions of these flow equations using expansions in powers of irreducible vertices or in powers of derivatives are given. Finally, in Part III the exact hierarchy of functional renormalization group flow equations for the irreducible vertices is used to study various aspects of non-relativistic fermions, including the so-called BCS-BEC crossover, thereby making the link to contemporary research topics.
This collection of Heinz Koenig's publications connects to his book of 1997 "Measure and Integration" and presents significant developments in the subject from then up to the present day. The result is a consistent new version of measure theory, including selected applications. The basic step is the introduction of the inner * (bullet) and outer * (bullet) premeasures and their extension to unique maximal measures. New "envelopes" for the initial set function (to replace the traditional Caratheodory outer measures) have been created, which lead to much simpler and more explicit treatment. In view of these new concepts, the main results are unmatched in scope and plainness, as well as in explicitness. Important examples are the formation of products, a unified Daniell-Stone-Riesz representation theorem, and projective limits. Further to the contributions in this volume, after 2011 Heinz Koenig published two more articles that round up his work: On the marginals of probability contents on lattices (Mathematika 58, No. 2, 319-323, 2012), and Measure and integration: the basic extension and representation theorems in terms of new inner and outer envelopes (Indag. Math., New Ser. 25, No. 2, 305-314, 2014).
Generalized Schur functions are scalar- or operator-valued holomorphic functions such that certain associated kernels have a finite number of negative squares. This book develops the realization theory of such functions as characteristic functions of coisometric, isometric, and unitary colligations whose state spaces are reproducing kernel Pontryagin spaces. This provides a modern system theory setting for the relationship between invariant subspaces and factorization, operator models, Krein-Langer factorizations, and other topics. The book is intended for students and researchers in mathematics and engineering. An introductory chapter supplies background material, including reproducing kernel Pontryagin spaces, complementary spaces in the sense of de Branges, and a key result on defining operators as closures of linear relations. The presentation is self-contained and streamlined so that the indefinite case is handled completely parallel to the definite case. |
![]() ![]() You may like...
Commercial Drafting and Detailing
Alan Jefferis, Kenneth Smith
Paperback
Manual of Methods for Marine Plankton
R & Srinivasan a & Khan S Santhanam
Hardcover
R1,848
Discovery Miles 18 480
|