![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > The environment > Pollution & threats to the environment > General
The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation.
Bioremediation is the use of microorganisms' metabolism to degrade waste contaminants (sewage, domestic, and industrial effluents) into non-toxic or less toxic materials by natural biological processes. Remediation through fungi-or mycoremediation-has multifarious possibilities in applied remediation engineering and the future of environmental sustainability. Fungi have the biochemical and ecological capability to degrade environmental organic chemicals and to decrease the risk associated with metals, semi-metals, noble metals, and radionuclides, either by chemical modification or by manipulating chemical bioavailability. Additionally, the capability of these fungi to form extended mycelia networks, the low specificity of their catabolic enzymes, and their using pollutants as a growth substrate make these fungi well suited for bioremediation processes. Their mycelia exhibit the robustness of adapting to highly limiting environmental conditions often experienced in the presence of persistent pollutants, which makes them more useful compared to other microbes. However, despite dominating the living biomass in soil and being abundant in aquatic ecosystems, fungi have not been exploited for the bioremediation of such environments. This book covers the various types of fungi and associated fungal processes used to clean up waste and wastewaters in contaminated environments and discusses future potential applications.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Chapters "Sonocatalysis: A Potential Sustainable Pathway for the Valorization of Lignocellulosic Biomass and Derivatives", "Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods" and "Green and Sustainable Separation of Natural Products from Agro-Industrial Waste: Challenges, Potentialities, and Perspectives on Emerging Approaches" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This work examines the waters of marine ports as unique integrated aquatic ecosystems. It regards marine ports as entities comprising components of natural and anthropogenic origin, including pelagic, periphytal and benthal subsystems. Using selected Black and Azov Sea ports as examples, the book discusses the hydrodynamics and water exchange, which are weakened in ports compared with open coastal zones. It reflects consequences of the presence of hydrobionts and the accumulation of organic matter, which are promoted by the variety of hard substrata and the absence of fishery. The book is divided into five main chapters. The first chapter describes the general characteristics of the marine ports at the northern coast of the Black and Azov Seas and their shipping channels. Chapters 2 to 4 discuss the main abiotic and biotic peculiarities of the pelagial, periphytal and benthal subsystems of those marine ports, and chapter 5 deals with tropho-dynamic processes in their ecosystems. A concluding section reflects recommendations how the ecosystems of ports in non-tidal seas may be ameliorated.
This book provides extensive and comprehensive information to researchers and academicians who are interested in radionuclide contamination, its sources and environmental impact. It is also useful for graduate and undergraduate students specializing in radioactive-waste disposal and its impact on natural as well as manmade environments. A number of sites are affected by large legacies of waste from the mining and processing of radioactive minerals. Over recent decades, several hundred radioactive isotopes (radioisotopes) of natural elements have been produced artificially, including 90Sr, 137Cs and 131I. Several other anthropogenic radioactive elements have also been produced in large quantities, for example technetium, neptunium, plutonium and americium, although plutonium does occur naturally in trace amounts in uranium ores. The deposition of radionuclides on vegetation and soil, as well as the uptake from polluted aquifers (root uptake or irrigation) are the initial point for their transfer into the terrestrial environment and into food chains. There are two principal deposition processes for the removal of pollutants from the atmosphere: dry deposition is the direct transfer through absorption of gases and particles by natural surfaces, such as vegetation, whereas showery or wet deposition is the transport of a substance from the atmosphere to the ground by snow, hail or rain. Once deposited on any vegetation, radionuclides are removed from plants by the airstre am and rain, either through percolation or by cuticular scratch. The increase in biomass during plant growth does not cause a loss of activity, but it does lead to a decrease in activity concentration due to effective dilution. There is also systemic transport (translocation) of radionuclides within the plant subsequent to foliar uptake, leading the transfer of chemical components to other parts of the plant that have not been contaminated directly.
This volume gives a detailed account into how renewables can be transformed into value-added products via homogeneous catalysis, especially via transiton metal homogeneous catalysis. The most important catalytic reactions of oleochemicals, isoprenoids, carbohydrates, lignin, proteins and carbon dioxide are described. Special emphasis is placed on carbon-carbon linkage reactions (hydroformylations, dimerisations, telomerisations, metathesis, polymerisations etc.), hydrogenations, oxidations and other important homogeneous reactions (such as isomerisations, hydrosilylations etc.). Also, tandem reactions including isomerising hydroformylations are presented. Wherever possible, the authors have included mechanistic, kinetic, and technical aspects. The reader is therefore given a total overview of the status quo of homogeneous catalysis directed to the most important renewables.
This book is the final installation in a three-volume series synthesizing 30 years of mercury research in the Florida Everglades. The first part of this book evaluates the occurrence of trends in both biota mercury concentrations and atmospheric mercury deposition. Through both empirical and deterministic analyses, the likely drivers of biota trends are identified. These analyses help lay the predicate for devising an overall strategy to mitigate and manage the Everglades mercury problem. The book concludes with a model analysis of the likely benefits and uncertainty attendant with implementing the leading candidate strategy for best reducing the Everglades mercury problem.
This book offers an overview of the recent studies and advances in environmental catalysis by nanomaterials, considering both the fundamental and the technological aspects. It offers contributions in different areas of environmental catalysis, including the catalytic and photocatalytic abatement of environmentally hazardous effluents from stationary or mobile sources, the valorization of waste and the production of sustainable energy. In other words, this monograph provides an overview of modern environmental and energy related applications with a particular emphasis to nano-sized catalytic materials. Recent concepts, experimental data and advanced theories are reported in this book to give evidence of the environmental and sustainable applications that can be found in the highly interdisciplinary field of catalysis.
Reviews of Environmental Contamination and Toxicology provides detailed review articles concerned with aspects of chemical contaminants, including pesticides, in the total environment with toxicological considerations and consequences. C.E. CASTRO: Environmental Dehalogenation-Chemistry and Mechanism M.J. KENNISH: Trace Metal-Sediment Dynamics in Estuaries: Pollution Assessment R.D. VINEBROOKE AND R. CULLIMORE: Natural Organic Matter and the Bound Water Concept in Aquatic Ecosystems
EPR of Free Radicals in Solids: Trends in Methods and Applications, 2nd ed. presents a critical two volume review of the methods and applications of EPR (ESR) for the study of free radical processes in solids. Emphasis is on the progress made in the developments in EPR technology, in the application of sophisticated matrix isolation techniques and in the advancement in quantitative EPR that have occurred since the 1st edition was published. Improvements have been made also at theoretical level, with the development of methods based on first principles and their application to the calculation of magnetic properties as well as in spectral simulations. EPR of Free Radicals in Solids II focuses on the trends in applications of experimental and theoretical methods to extract structural and dynamical properties of radicals and spin probes in solid matrices by continuous wave (CW) and pulsed techniques in nine chapters written by experts in the field. It examines the studies involving radiation- and photo-induced inorganic and organic radicals in inert matrices, the high-spin molecules and metal-based molecular clusters as well as the radical pro-cesses in photosynthesis. Recent advancements in environmental applications in-cluding measurements by myon resonance of radicals on surfaces and by quantitative EPR in dosimetry are outlined and the applications of optical detection in material research with much increased sensitivity reviewed. The potential use of EPR in quantum computing is considered in a newly written chapter. This new edition is aimed to experimentalists and theoreticians in research involving free radicals, as well as for students of advanced courses in physical chemis-try, chemical physics, materials science, biophysics, biochemistry and related fields.
This book reviews the unique ecosystem of the Lake Skadar/Shkodra and its basin, and discusses the latest advances made in this region to face the impact of climate change. Divided into 23 chapters, the book gathers leading expertise from various scientific and engineering communities and provides readers with extensive discussions of core issues, including the water and sediment chemistry of Lake Skadar/Shkodra and the metal pollution that is evident in plants, aquatic invertebrates and fish. Readers will discover how a sustainable science-based management approach can be applied to the Lake Skadar/Shkodra region, and will learn about the environment prospects for the region. This book is intended as an essential tool for all scientists interested in the Lake Skadar/Shkodra environment - in particular those investigating the interactions between land and water, between limnology and biota, and between natural and cultural resources.
Arguing that Antarctica is the most mediated place on earth and thus an ideal location for testing the limits of bio-political management of population and place, this book remaps national and postcolonial methods and offers a new look on a 'forgotten' continent now the focus of ecological concern.
Microbial degradation, Phytoremediation, Remediation, Explosive residues, Biotransformation, Mineralization, Degradative Enzymes, Degradation Pathways, Energetics, Soil contamination, Water contamination.
Recent developments in air pollution modelling are explored as a series of contributions from researchers at the forefront of their field. This newest contribution on air pollution modelling and its application is focused on local, urban, regional and intercontinental modelling; data assimilation and air quality forecasting; model assessment and evaluation; aerosol transformation. Additionally, this work also examines the relationship between air quality and human health and the effects of climate change on air quality. The work derives from a series of papers presented at the 33rd International Technical Meeting on Air Pollution Modelling and its Application held in Miami, USA, August 27 - 31, 2013.The book is intended as reference material for students and professors interested in air pollution modelling at the graduate level as well as researchers and professionals involved in developing and utilizing air pollution models."
In this updated and expanded second edition, new literature has been added on contaminant fate in the soil-subsurface environment. In particular, more data on the behavior of inorganic contaminants and on engineered nanomaterials were included, the latter comprising a group of emerging contaminants that may reach the soil and subsurface zones. New chapters are devoted to a new perspective of contaminant geochemistry, namely irreversible changes in pristine land and subsurface systems following chemical contamination. Two chapters were added on this topic, focusing attention on the impact of chemical contaminants on the matrix and properties of both liquid and solid phases of soil and subsurface domains. Contaminant impacts on irreversible changes occurring in groundwater are discussed and their irreversible changes on the porous medium solid phase are surveyed. In contrast to the geological time scale controlling natural changes of porous media liquid and solid phases, the time scale associated with chemical pollutant induced changes is far shorter and extends over a human lifetime scale ."
Air pollution policy is closely connected with climate change, public health, energy, transport, trade, and agriculture, and generally speaking, the Earth has been pushed to the brink and the damage is becoming increasingly obvious. The transport sector remains a foremost source of air pollutants - a fact that has stimulated the production of biofuels. This book focuses on the biodiesel industry, and proposes a modification of the entire manufacturing chain that would pave the way for further improvements. Oil derived from oilseed plantations/crops is the most commonly used feedstock for the production of biodiesel. At the same time, the UK's Royal Academy of Engineering and 178 scientists in the Netherlands have determined that some biofuels, such as diesel produced from food crops, have led to more emissions than those produced by fossil fuels. Accordingly, this book re-evaluates the full cycle of biodiesel production in order to help find optimal solutions. It confirms that the production and use of fertilizers for the cultivation of crop feedstocks generate considerably more GHG emissions compared to the mitigation achieved by using biodiesel. To address this fertilization challenge, projecting future biofuel development requires a scenario in which producers shift to an organic agriculture approach that includes the use of microalgae. Among advanced biofuels, algae's advantages as a feedstock include the highest conversion of solar energy, and the ability to absorb CO2 and pollutants; as such, it is the better choice for future fuels. With regard to the question of why algae's benefits have not been capitalized on for biofuel production, our analyses indicate that the sole main barrier to realizing algae's biofuel potential is ineffective international and governmental policies, which create difficulties in reconciling the goals of economic development and environmental protection.
This book provides a detailed description and analysis of the reduction and metabolism of metals and metalloids by sulfate reducing bacteria. The molecular mechanisms of bacterial resistance to copper are examined as well as extracellular electron transfer and bacterial metal oxide respiration. Furthermore, in this book enrichment, isolation, and physiology of magnetotactic bacteria are discussed. The interactions of bacteria with metals in natural environments and their role in metal cycling have been studied for decades. Advances in studies of bacteria-metal interactions identified numerous important aspects of these interactions, such as bioremediation of metal-contaminated environments, the role of metals in redox reactions and other cellular functions, as well as the role of metals in toxicity and infection. Microbiologists, environmental scientists, and students interested in microbe interactions with metals and their effect on the environment and their application in biotechnology will be interested in the topics discussed in the book.
This is the second of two volumes that together provide an integrated picture of the Montenegrin Adriatic coast, presenting the natural components of the system as well as the chemical composition and chemical processes in the extended area. This book covers all aspects of marine chemistry such as the hydrographic and oceanographic characteristics of seawater, the toxicity of heavy metals in the marine environment, the quality of marinas and maritime areas, and the legal regime for protecting the marine environment from pollution. Given the breadth and depth of its coverage, the book offers an invaluable source of information for researchers, students and environmental managers alike.
This comprehensive book covers the environmental issues concerning silver nanoparticles (AgNPs). Following an introduction to the history, properties and applications, the environmental concerns of AgNPs is discussed. In the second chapter, the separation, characterization and quantification of AgNPs in environment samples are described in detail. In the remaining parts of the book, the authors focus on the environmental processes and effects of AgNPs, with chapters on the pathway into environment, fate and transport, toxicological effects and mechanisms, as well as the environmental bioeffects and safety-assessment of AgNPs in the environment. This book is designed to describe current understanding of the environmental aspects of AgNPs. It provides a valuable resource to students and researchers in environmental science and technology, nanotechnology, toxicology, materials science and ecology; as well as to professionals involved in the production and consumption of AgNPs in various areas including catalysis, food products, textiles/fabrics, and medical products and devices. Jingfu Liu and Guibin Jiang are professors at State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
Our interest in the microbial biodegradation of xenobiotics has increased many folds in recent years to find out sustainable ways for environmental cleanup. Bioremediation and biotransformation processes harness the naturally occurring ability of microbes to degrade, transform or accumulate a wide range of organic pollutants. Major methodological breakthroughs in recent years through detailed genomic, metagenomic, proteomic, bioinformatic and other high-throughput analyses of environmentally relevant microorganisms have provided us unprecedented insights into key biodegradative pathways and the ability of organisms to adapt to changing environmental conditions. The degradation of a wide spectrum of organic pollutants and wastes discharged into the environment by anthropogenic activities is an emerging need today to promote sustainable development of our society with low environmental impact. Microbial processes play a major role in the removal of recalcitrant compounds taking advantage of the astonishing catabolic versatility of microorganisms to degrade or transform such compounds. New breakthroughs in sequencing, genomics, proteomics, bioinformatics and imaging are generating vital information which opens a new era providing new insights of metabolic and regulatory networks, as well as clues to the evolution of degradation pathways and to the molecular adaptation strategies to changing environmental conditions. Functional genomic and metagenomic approaches are increasing our understanding of the relative importance of different pathways and regulatory networks to carbon flux in particular environments and for particular compounds. New approaches will certainly accelerate the development of bioremediation technologies and biotransformation processes in coming years for natural attenuation of contaminated environments
This comprehensive book contains contributions from specialists who provide a complete status update along with outstanding issues encompassing different topics related to deep-sea mining. Interest in exploration and exploitation of deep-sea minerals is seeing a revival due to diminishing grades and increasing costs of processing of terrestrial minerals as well as availability of several strategic metals in seabed mineral resources; it therefore becomes imperative to take stock of various issues related to deep-sea mining. The authors are experienced scientists and engineers from around the globe developing advanced technologies for mining and metallurgical extraction as well as performing deep sea exploration for several decades. They invite readers to learn about the resource potential of different deep-sea minerals, design considerations and development of mining systems, and the potential environmental impacts of mining in international waters.
This book combines soil science, earth science, and environmental geochemistry, providing comprehensive background information for specialists interested in chemical-induced changes in the soil-subsurface system. Readers are introduced to the chemistry of contaminants that often disturb the natural soil-subsurface equilibrium as a result of human activity. While the soil-subsurface system has in many cases been affected by human impact, the effects of chemical contaminants on the actual matrix and properties have been largely neglected. The major focus of the book is on changes to the soil-subsurface matrix and properties caused by chemical pollution. By integrating results available in the literature, we observe that chemical pollutants may lead to the irreversible formation of a new soil-subsurface regime characterized by a matrix and properties different than those of the natural regime. In contrast to the geological time scales dictating natural changes to the matrix and properties of the soil-subsurface system, the time scale associated with chemical pollutant-induced changes is far shorter and extends over a "human lifetime scale." The numerous examples presented in the book confirm that chemical contamination should be considered as an additional factor in the formation of a contemporary soil-subsurface regime that is different than that of the pristine system.
Reviews of Environmental Contamination and Toxicology attempts to provide concise, critical reviews of timely advances, philosophy and significant areas of accomplished or needed endeavor in the total field of xenobiotics, in any segment of the environment, as well as toxicological implications.
Comprising 12 chapters, this book focuses on volatile methylsiloxanes (VMSs), the shorter-chained organosiloxanes, and reviews the main areas and environmental compartments where they have been found and studied. It opens with a detailed description of the structural and functional properties, toxic risks and possible transformations of VMSs in the environment and their main uses in various activities and products, as well as the identification of the main sources of emission. Further chapters examine the analytical strategies and protocols that have been used to address the quantification of VMSs, including the issue of possible cross-contaminations. The book also discusses the presence of VMSs in wastewater treatment plants (WWTPs) and in water bodies, their atmospheric fate and levels in biota, as well as occurrences of VMSs in remote areas of the world. It closes with a comprehensive conclusion and discussion on future directions for upcoming studies. This book is not intended as a finishing line, but rather as an important step towards improving our understanding of VMSs, to fuel new collaborations between research groups and/or with industry and lastly to convince more researchers to explore the mysteries of these ubiquitous, yet understudied, chemicals.
This book provides an overview to researchers, graduate, and undergraduate students, as well as academicians who are interested in arsenic. It covers human health risks and established cases of human ailments and sheds light on prospective control measures, both biological and physico-chemical. Arsenic (As) is a widely distributed element in the environment having no known useful physiological function in plants or animals. Historically, this metalloid has been known to be used widely as a poison. Effects of arsenic have come to light in the past few decades due to its increasing contamination in several parts of world, with the worst situation being in Bangladesh and West Bengal, India. The worrying issue is the ingestion of arsenic through water and food and associated health risks due to its carcinogenic and neurotoxic nature. The impact of the problem is widespread, and it has led to extensive research on finding both the causes and solutions. These attempts have allowed us to understand the various probable causes of arsenic contamination in the environment, and at the same time, have provided a number of possible solutions. It is reported that more than 200 mineral species contain As. Generally, As binds with iron and sulfur to form arsenopyrite. According to one estimate from the World Health Organization (WHO), contextual levels of As in soil ranges from 1 to 40 mg kg-1. Arsenic toxicity is related to its oxidation state which is present in the medium. As is a protoplastic toxin, due to its consequence on sulphydryl group it interferes in cell enzymes, cell respiration and in mitosis. Exposure of As may occur to humans via several industries, such as refining or smelting of metal ores, microelectronics, wood preservation, battery manufacturing, and also to those who work in power plants that burn arsenic-rich coal. |
![]() ![]() You may like...
Better Choices - Ensuring South Africa's…
Greg Mills, Mcebisi Jonas, …
Paperback
Excited States in Organic Chemistry and…
A. Pullman, N. Goldblum
Hardcover
R5,846
Discovery Miles 58 460
A Primer in Density Functional Theory
Carlos Fiolhais, Fernando Nogueira, …
Hardcover
R2,064
Discovery Miles 20 640
Computer Vision and Machine Learning in…
Mohammad Shorif Uddin, Jagdish Chand Bansal
Hardcover
R4,594
Discovery Miles 45 940
|