![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Geological surface processes (geomorphology)
Teide Volcano has many different meanings: For the Guanche aborigines, who endured several of its eruptions, it was Echeide (Hell). Early navigators had in Teide, a lifesaving widely visible landmark that was towering over the clouds. For the first explorers, Teide was a challenging and dangerous climb, since it was thought that Teide's peak was so high that from its summit the sun was too close and far too hot to survive. Teide was considered the highest mountain in the world at that time and measuring its height precisely was a great undertaking and at the time of global scientific significance. For von Buch, von Humboldt, Lyell and other great 18th and19th century naturalists, Teide helped to shape a new and now increasingly 'volcanic' picture, where the origin of volcanic rocks (from solidified magma) slowly casted aside Neptunism and removed some of the last barriers for the development of modern Geology and Volcanology as the sciences we know today. For the present day population of Tenerife, living on top of the world's third tallest volcanic structure on the planet, Teide has actually become "Padre Teide", a fatherly protector and an emblematic icon of Tenerife, not to say of the Canaries as a whole. The UNESCO acknowledged this iconic and complex volcano, as "of global importance in providing evidence of the geological processes that underpin the evolution of oceanic islands". Today, 'Teide National Park' boasts 4 Million annual visitors including many 'volcano spotters' and is a spectacular natural environment which most keep as an impression to treasure and to never forget. For us, the editors of this book, Teide is all of the above; a 'hell of a job', a navigation point on cloudy days, a challenge beyond imagination, a breakthrough in our understanding of oceanic volcanism that has shaped our way of thinking about volcanoes, and lastly, Teide provides us with a reference point from where to start exploring other oceanic volcanoes in the Canaries and beyond. Here we have compiled the different aspects and the current understanding of this natural wonder.
Globally, mineral exploration has grown significantly in recent
years, driven by the rapid acceleration in prices for gold and
diamonds since 2004 and the emergence of a middle class in both
China and India-aggressively increased demand. Despite this
resurgence, no single book has been published that takes an
interdisciplinary approach in addressing the full scope of mineral
exploration-from mining and extraction to economic evaluation,
policies, sustainability, and environmental impacts. "Mineral
Exploration: Principles and Applications" accomplishes this by
presenting each topic with theoretical approaches first followed by
specific applications that can be immediately implemented in the
field.
Permafrost Hydrology systematically elucidates the roles of seasonally and perennially frozen ground on the distribution, storage and flow of water. Cold regions of the World are subject to mounting development which significantly affects the physical environment. Climate change, natural or human-induced, reinforces the impacts. Knowledge of surface and ground water processes operating in permafrost terrain is fundamental to planning, management and conservation. This book is an indispensable reference for libraries and researchers, an information source for practitioners, and a valuable text for training the next generations of cold region scientists and engineers.
This book presents an analysis of our current knowledge on the origin of the Earth's continental crust. There are two aspects to consider: tectonic and igneous processes. Tectonic aspects include sedimentary accretion, terrane accretion, and continental collision at continental margins, in association with plate subduction. These processes result in the formation of large mountain belts, the building up of which literally grows the continents. However, these tectonic aspects are concerned with material recycling within the crust, and hence do not contribute to volumetric growth of continental crust. Igneous processes concern separation of continental crust from the mantle and result in the volumetric growth of continental crust. Therefore, the main focus of this book is to systematically examine why and how the Earth's continental crust forms, by evaluating magmatic processes at island arcs where new continental crust forms.
The book presents an up-to-date, detailed overview of the
Quaternary glaciations all over the world, not only with regard to
stratigraphy but also with regard to major glacial landforms and
the extent of the respective ice sheets. The locations of key sites
are included. The information is presented in digital, uniformly
prepared maps which can be used in a Geographical Information
System (GIS) such as ArcView or ArcGIS. The accompanying text
supplies the information on how the data were obtained
(geomorphology, geological mapping, air photograph evaluation,
satellite imagery), how the features were dated (14C, TL, relative
stratigraphy) and how reliable they are supposed to be. All
references to the underlying basic publications are included. Where
controversial interpretations are possible e.g. in Siberia or
Tibet, this is pointed out. As a result, the information on
Quaternary glaciations worldwide will be much improved and supplied
in a uniform digital format. The information on the glacial limits
is compiled in digital form by the coordinators of the project, and
is available for download at: http:
//booksite.elsevier.com/9780444534477/ * completely updated detailed coverage of worldwide Quaternary glaciations * information in digital, uniformly prepared maps which can be used in a GIS such as ArcView or ArcGis * step-by-step guideline how to open and use ArcGis files * possibility to convert the shapefiles into GoogleEarth kmz-files * availability of chronological controls
Landslides in sensitive clays represent a major hazard in the northern countries of the world such as Canada, Finland, Norway, Russia, Sweden and in the US state of Alaska. Past and recent examples of catastrophic landslides at e.g. Saint-Jean-Vianney in 1971, Rissa in 1979, Finneidfjord in 1996 and Kattmarka in 2009 have illustrated the great mobility of the remolded sensitive clays and their hazardous retrogressive potential. These events call for a better understanding of landslide in sensitive clay terrain to assist authorities with state-of-the-art hazard assessment methods, risk management schemes, mitigation measures and planning. During the last decades the elevated awareness regarding slope movement in sensitive clays has led to major advances in mapping techniques and development of highly sophisticated geotechnical and geophysical investigation tools. Great advances in numerical techniques dealing with progressive failure and landslide kinematic have also lead to increase understanding and predictability of landslides in sensitive clays and their consequences. This volume consists of the latest scientific research by international experts dealing with geological, geotechnical and geophysical aspects of slope failure in sensitive clays and focuses on understanding the full spectrum of challenges presented by landslides in such brittle materials.
The Dead Sea transform is an active plate boundary connecting the Red Sea seafloor spreading system to the Arabian-Eurasian continental collision zone. Its geology and geophysics provide a natural laboratory for investigation of the surficial, crustal and mantle processes occurring along transtensional and transpressional transform fault domains on a lithospheric scale and related to continental breakup. There have been many detailed and disciplinary studies of the Dead Sea transform fault zone during the last20 years and this book brings them together. This book is an updated comprehensive coverage of the knowledge, based on recent studies of the tectonics, structure, geophysics, volcanism, active tectonics, sedimentology and paleo and modern climate of the Dead Sea transform fault zone. It puts together all this new information and knowledge in a coherent fashion."
This book discusses how sediments compact with depth and applications of the compaction trends. Porosity reduction in sediment conveniently indicates the degree of sediments compacted after deposition. Published empirical curves- the compaction curves- are depth-wise porosity variation through which change in pore spaces from sediment surface to deeper depths e.g. up to 6 km can be delineated. Porosity is derived from well logs. Compaction curves, referred to as the Normal Porosity Profile of shales, sandstones and shale bearing sandstones of different models are reviewed along with the different mechanical and chemical compaction processes. These compaction models reveals how porosity reduces depth-wise and the probable reason for anomalous zones. Deviation from these normal compaction trends may indicate abnormal pressure scenarios: either over- or under pressure. We highlight global examples of abnormal pressure scenarios along with the different primary- and secondary mechanisms. Well logs and cores being the direct measurements of porosity, well log is the only cost-effective way to determine porosity of subsurface rocks. Certain well logs can detect overpressure and the preference of one log above the other helps reduce the uncertainty. Apart from delineation of under-compacted zones by comparing the modeled- with the actual compaction, porosity data can also estimate erosion.
This book details the analytical processes, and interpretation of the resulting data, needed in order to achieve a comprehensive source-rock evaluation of organic-rich shales. The authors employ case studies on Permian and Cretaceous shales from various Indian basins and other petroleum-bearing basins around the world to illustrate the key features of their organic-rich shale characterization methodology. These case studies may also help to identify potential zones within shale formations that could be exploited for commercial gas and/or oil production. Given its scope, the book will be of interest to all researchers working in the field of source-rock analysis. In addition, the source-rock evaluation techniques - and the various intricacies associated with them - discussed here offer valuable material for postgraduate geology courses.
This book introduces systematically the cryospheric science, covering the formation, development, evolution, and research methods of each component of the cryosphere, the interaction between the cryosphere and the other spheres of the climate system and the anthroposphere, and the hot topics of social and economic sustainable development and geopolitics. The authors are world-renowned experts and scientists working in the related fields. They have a deep understanding and accurate grasp of the basic theory, evolution mechanism, and international frontiers of the cryosphere, as well as rich teaching experience, which makes this book suitable also as textbook for graduate students. It is also the first book that introduces the knowledge of cryospheric science systematically. In addition to theoretical knowledge, the book also introduces field work and experimental analysis. It should be of interests for the scholars and graduate student working in the fields of geography, hydrology, geology, geomorphology, atmosphere, ecology, environment, oceanography, and regional economic and social sustainable development.
This book on the current state of knowledge of submarine geomorphology aims to achieve the goals of the Submarine Geomorphology working group, set up in 2013, by establishing submarine geomorphology as a field of research, disseminating its concepts and techniques among earth scientists and professionals, and encouraging students to develop their skills and knowledge in this field. Editors have invited 30 experts from around the world to contribute chapters to this book, which is divided into 4 sections - (i) Introduction & history, (ii) Data & methods, (ii) Submarine landforms & processes and (iv) Conclusions & future directions. Each chapter provides a review of a topic, establishes the state-of-the-art, identifies the key research questions that need to be addressed, and delineates a strategy on how to achieve this. Submarine geomorphology is a priority for many research institutions, government authorities and industries globally. The book is useful for undergraduate and graduate students, and professionals with limited training in this field.
Wind erosion occurs in many arid, semiarid and agricultural areas of the world. It is an environmental process in?uenced by geological and climatic variations as well as human activities. In general, wind erosion leads to land degradation in agricultural areas and has a negative impact on air quality. Dustemissiongeneratedbywinderosionisthelargestsourceofaerosolswhich directly or indirectly in?uence the atmospheric radiation balance and hence global climatic variations. Strong wind-erosion events, such as severe dust storms, may threaten human lives and cause substantial economic damage. The physics of wind erosion is complex, as it involves atmospheric, soil and land-surface processes. The research on wind erosion is multidisciplinary, covering meteorology, ?uid dynamics, soil physics, colloidal science, surface soil hydrology, ecology, etc. Several excellent books have already been written about the topic, for instance, by Bagnold (1941, The Physics of Blown Sand and Desert Dunes), Greeley and Iversen (1985, Wind as a Geological P- cess on Earth, Mars, Venus and Titan), Pye (1987, Aeolian Dust and Dust Deposits), Pye and Tsoar (1990, Aeolian Sand and Sand Dunes). However, considerable progress has been made in wind-erosion research in recent years and there is a need to systematically document this progress in a new book.
This book presents recent findings on the structure and evolution of the Southern Andes. Through a detailed description of a series of orogenic segments reviewed by the different groups that have worked with structural and geophysical tools in each area over the last several years, it illustrates the diversity of mechanisms that have impacted strong orogenic gradients and consequently mountain morphology, from the southern Pampean flat subduction zone to the southern tip of the continent (33-56 S). The book also revises our conventional understanding of the source of the different Mesozoic to Cenozoic sections exhumed in the orogenic wedge, with the objective of discussing basin mechanisms through time. A final chapter discusses probable orogenic controls that have acted together in order to explain structure, the different deformational stages and intra-orogenic extensional collapses that affected the fold and thrust belt over time.
During the past years, Saudi Arabia has been affected by particularly severe torrential rains and floods. This book presents an in-depth and all-encompassing study on the floods that occurred in the Jeddah area in 2009 and 2011, including water-flow mechanisms, state-of-the-art techniques for flood assessment, flood control and appropriate management approaches. It highlights a number of methods and concepts that can be applied in similar areas in Saudi Arabia in order to reduce and mitigate the impact of torrential rains and floods.
Landslides in cold regions have different mechanisms from those in other areas, and comparatively few research efforts have been made in this field. Recently, because of climate change, some new trends concerning landslide occurrence and motion have appeared, severely impacting economic development and communities. This book collects key case studies from the cold regions all over the world, providing an overview of the general situation.
This book on multiscale seismic tomography, written by one of the leaders in the field, is suitable for undergraduate and graduate students, researchers, and professionals in Earth and planetary sciences who need to broaden their horizons about seismotectonics, volcanism, and interior structure and dynamics of the Earth and Moon. It describes the state-of-the-art in seismic tomography, with emphasis on the new findings obtained by applying tomographic methods in local, regional, and global scales for understanding the generating mechanism of large and great earthquakes such as the 2011 Tohoku-oki earthquake (Mw 9.0), crustal and upper mantle structure, origin of active arc volcanoes and intraplate volcanoes including hotspots, heterogeneous structure of subduction zones, fate of subducting slabs, origin of mantle plumes, mantle convection, and deep Earth dynamics. The first lunar tomography and its implications for the mechanism of deep moonquakes and lunar evolution are also introduced.
This unique book provides a concise account of Indian Paleogene and presents a unified view of the Paleogene sequences of India. The Paleogene, comprising the early part of the Cenozoic Era, was the most dynamic period in the Earth's history with profound changes in the biosphere and geosphere. The period spans ~42 million years, beginning from post- K/T mass extinction event at ~65 Ma and ending at ~23 Ma, when the first Antarctic ice sheet appeared in the Southern Hemisphere. The early Paleogene (Paleocene-Eocene) has been considered a globally warm period, superimposed on which were several transient hyperthermal events of extreme warmth. Of these, the Palaeocene Eocene Thermal Maxima (PETM) boundary interval is the most prominent extreme warming episode, lasting 200 Ka. PETM is characterized by 2-60/00 global negative carbon isotope excursion. The event coincided with the Benthic Extinction Event (BEE) in deep sea and Larger Foraminifera Turnover (LFT) in shallow seas. Rapid ~60-80 warming of high latitudinal regions led to major faunal and floral turnovers in continental, shallow-marine and deep-marine areas. The emergence and dispersal of mammals with modern characteristics, including Artiodactyls, Perissodactyls and Primates (APP), and the evolution and expansion of tropical vegetation are some of the significant features of the Paleogene warm world. In the Indian subcontinent, the beginning and end of the Paleogene was marked by various events that shaped the various physiographic features of the Indian subcontinent. The subcontinent lay within the equatorial zone during the earliest part of the Paleogene. Carbonaceous shale, coal and lignite deposits of early Eocene age (~55.5-52 Ma) on the western and north-eastern margins of the Indian subcontinent are rich in fossils and provide information on climate as well as the evolution and paleobiogeography of tropical biota. Indian Paleogene deposits in the India-Asia collision zone also provide information pertaining to the paleogeography and timing of collision. Indian Paleogene rocks are exposed in the Himalayan and Arakan mountains; Assam and the shelf basins of Kutch-Saurashtra, Western Rajasthan; Tiruchirappalli-Pondicherry and Andaman and, though aerially limited, these rocks bear geological evidence of immense importance.
This book is intended to complement the author's 1996 book "The geology of fluvial deposits,"not to replace it. The book summarizes methods of mapping and interpretation of fluvial depositional systems, with a detailed treatment of the tectonic, climatic and eustatic controls on fluvial depositional processes. It focuses on the preserved, ancient depositional record and emphasizes large-scale (basin-scale) depositional processes. Tectonic and climatic controls of fluvial sedimentation and the effects of base-level change on sequence architecture are discussed. Profusely illustrated and with an extensive reference to the recent literature, this book will be welcomed by the student and professional geologist alike."
Polynyas are relatively ice-free regions when compared to the areas
around them, and have been suggested as being foci for energy
transfer between the atmosphere and ocean, ice "factories," and
critical areas with respect to polar ecosystems and biogeochemical
cycles. This volume presents an integrated, multidisciplinary
review of polynyas in both the Arctic and Antarctic. It emphasizes
the meteorology, ice dynamics, oceanography, biological components,
chemistry, and modeling of these systems, particularly with respect
to their roles in polar processes and distributions. The various
interactions within polynyas, particularly between the physical
forcing and biological responses, is emphasized, as are the
potential changes in polynyas that might occur under a climate
regime that is rapidly changing. The authors of the reviews are
leaders among their respective countries in polynya research, and
all are internationally recognized.
This collection of works spans the breadth of the field of geology, with many titles coming from the Binghamton Symposia in Geomorphology series. Written by some of the world's leading experts in their fields, this set is a key reference resource.
This book presents a detailed analysis and synthesis of the processes affecting sediments fluxes from watershed to worldwide coastal systems. The volume provides a comprehensive overview and constitutes a systematic description of the response of coastal systems to global and local changes, like climate change, sea level, land use and land cover change. The case studies cover a sequence of coastal environments such as lagoons, bays, estuaries, deltas and beaches. Sediment Fluxes in Coastal Areas is designed for researchers, professionals and for course-use in hydrology, oceanography, geography, geology, geomorphology and environmental science.
This book presents the concepts and tools of ice mechanics, together with examples of their application in the fields of glaciology, climate research and civil engineering in cold regions. It starts with an account of the most important physical properties of sea and polar ice treated as an anisotropic polycrystalline material, and reviews relevant field observations and experimental measurements. The book focuses on theoretical descriptions of the material behaviour of ice in different stress, deformation and deformation-rate regimes on spatial scales ranging from single ice crystals, those typical in civil engineering applications, up to scales of thousands of kilometres, characteristic of large, grounded polar ice caps in Antarctica and Greenland. In addition, it offers a range of numerical formulations based on either discrete (finite-element, finite-difference and smoothed particle hydrodynamics) methods or asymptotic expansion methods, which have been used by geophysicists, theoretical glaciologists and civil engineers to simulate the behaviour of ice in a number of problems of importance to glaciology and civil engineering, and discusses the results of these simulations. The book is intended for scientists, engineers and graduate students interested in mathematical and numerical modelling of a wide variety of geophysical and civil engineering problems involving natural ice.
GPS and GNSS Technology in Geosciences offers an interdisciplinary approach to applying advances in GPS/GNSS technology for geoscience research and practice. As GPS/GNSS signals can be used to provide useful information about the Earth's surface characteristics and land surface composition, GPS equipment and services for commercial purposes continues to grow, thus resulting in new expectations and demands. This book provides case studies for a deeper understanding of the operation and principles of widely applied approaches and the benefits of the technology in everyday research and activities.
Sedimentary basins host, among others, most of our energy and fresh-water resources: they can be regarded as large geo-reactors in which many physical and chemical processes interact. Their complexity can only be well understood in well-organized interdisciplinary co-operations. This book documents how researchers from different geo-scientific disciplines have jointly analysed the structural, thermal, and sedimentary evolution as well as fluid dynamics of a complex sedimentary basin system which has experienced a variety of activation and reactivation impulses as well as intense salt tectonics. In this book we have summarized our geological, geophysical and geochemical understanding of some of the most important processes affecting sedimentary basins in general and our view on the evolution of one of the largest, best explored and most complex continental sedimentary basins on Earth: The Central European Basin System.
This book provides an integrated approach to the assessment of seismic hazards. The reduction of losses expected by future earthquakes is probably the most important contribution of seismology to society. Large earthquakes occurred in densely populated areas highlight the dramatic inadequacy of a massive portion of the buildings demonstrating the high risks of modern industrial societies. Building earthquake-resistant structures and retrofitting old buildings on a national scale can be extremely expensive and can represent an economic challenge even for developed western countries. Earthquakes can cause also several psychological problems due to the fact that such kind of disasters will result in casualties, collapsing of houses, strategic buildings and facilities and deeply affect a community. Moreover in our society it is necessary to properly plan emergency responses and rescues taking into account any possible secondary effect in order to avoid more casualties. |
![]() ![]() You may like...
Modern Trends in Controlled Stochastic…
Alexey Piunovskiy, Yi Zhang
Hardcover
R5,629
Discovery Miles 56 290
The Virtuous Psychiatrist - Character…
Jennifer Radden, John Sadler
Hardcover
R1,994
Discovery Miles 19 940
|