0
Your cart

Your cart is empty

Browse All Departments
Price
  • R250 - R500 (1)
  • R500+ (267)
  • -
Status
Format
Author / Contributor
Publisher

Books > Professional & Technical > Energy technology & engineering > Heat transfer processes

District Cooling - Theory and Practice (Hardcover): Alaa A. Olama District Cooling - Theory and Practice (Hardcover)
Alaa A. Olama
R5,331 Discovery Miles 53 310 Ships in 10 - 15 working days

DISTRICT COOLING: THEORY and PRACTICE provides a unique study of an energy cogeneration system, set up to bring chilled water to buildings (offices, apartment houses, and factories) needing cooling for air conditioning and refrigeration. In winter, the source for the cooling can often be sea water, so it is a cheaper resource than using electricity to run compressors for cooling. The related technology of District Heating has been an established engineering practice for many years, but District Cooling is a relatively new technology now being implemented in various parts of the world, including the USA, Arab Emirates and Kuwait, and Saudi Arabia. Existing books in the area are scarce, and do not address many of the crucial issues facing nations with high overall air temperatures, many of which are developing District Cooling plans using sea water. DISTRICT COOLING: THEORY & PRACTICE integrates the theory behind district cooling planning with the practical engineering approaches, so it can serve the policy makers, engineers, and planners whose efforts have to be coordinated and closely managed to make such systems effective and affordable. In times of rising worldwide temperatures, District Cooling is a way to provide needed cooling with energy conservation and sustainability. This book will be the most up-to-date and comprehensive study on the subject, with Case Studies describing real projects in detail.

Heat Pumps - Skills2Learn Renewable Energy Workbook (Paperback, International Edition): Skills2learn Skills2learn Heat Pumps - Skills2Learn Renewable Energy Workbook (Paperback, International Edition)
Skills2learn Skills2learn
R584 Discovery Miles 5 840 Ships in 10 - 15 working days

Developed in partnership between Skills2Learn and Cengage Learning, this highly interactive workbook can be used as a resource tool for all introductory renewable energy vocational qualifications and apprenticeships. This unique workbook is designed to consolidate learners' theoretical knowledge prior to undertaking practical workshop exercises. Heat Pumps provides learners with a thorough insight into renewable energies including the different types of heat and electricity producing technologies, the selection process, incentives and government policies. Part of the Renewable Energy Series, this unique write-in workbook can also be used alongside the Skills2Learn Heat Pumps virtual reality e-learning programme making this a first-of-its-kind, fully integrated blended learning solution.

Cryogenic Heat Transfer (Hardcover, 2nd edition): Randall F. Barron, Gregory F. Nellis Cryogenic Heat Transfer (Hardcover, 2nd edition)
Randall F. Barron, Gregory F. Nellis
R6,396 Discovery Miles 63 960 Ships in 10 - 15 working days

Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study. New in the Second Edition: Expands on thermal properties at cryogenic temperatures to include latent heats and superfluid helium Develops the material on conduction heat transfer and divides it into four separate chapters to facilitate understanding of the separate features and computational techniques in conduction heat transfer Introduces EES (Engineering Equation Solver), a computer-aided design tool, and other computer applications such as Maple Describes special features of heat transfer at cryogenic temperatures such as analysis with variable thermal properties, heat transfer in the near-critical region, Kapitza conductance, and network analysis for free-molecular heat transfer Includes design procedures for cryogenic heat exchangers Cryogenic Heat Transfer, Second Edition discusses the unique problems surrounding conduction heat transfer at cryogenic temperatures. This second edition incorporates various computational software methods, and provides expanded and updated topics, concepts, and applications throughout. The book is designed as a textbook for students interested in thermal problems occurring at cryogenic temperatures and also serves as reference on heat transfer material for practicing cryogenic engineers.

Microscale and Nanoscale Heat Transfer - Analysis, Design, and Application (Hardcover): Mourad Rebay, Sadik Kakac, Renato M.... Microscale and Nanoscale Heat Transfer - Analysis, Design, and Application (Hardcover)
Mourad Rebay, Sadik Kakac, Renato M. Cotta
R7,075 Discovery Miles 70 750 Ships in 10 - 15 working days

Microscale and Nanoscale Heat Transfer: Analysis, Design, and Applications features contributions from prominent researchers in the field of micro- and nanoscale heat transfer and associated technologies and offers a complete understanding of thermal transport in nano-materials and devices. Nanofluids can be used as working fluids in thermal systems; the thermal conductivity of heat transfer fluids can be increased by adding nanoparticles in fluids. This book provides details of experimental and theoretical investigations made on nanofluids for use in the biomechanical and aerospace industries. It examines the use of nanofluids in improving heat transfer rates, covers the numerical approaches for computational fluid dynamics (CFD) simulation of nanofluids, and reviews the experimental results of commonly used nanofluids dispersed in both spherical and nonspherical nanoparticles. It also focuses on current and developing applications of microscale and nanoscale convective heat transfer. In addition, the book covers a wide range of analysis that includes: Solid-liquid interface phonon transfer at the molecular level The validity of the continuum hypothesis and Fourier law in nanochannels Conventional methods of using molecular dynamics (MD) for heat transport problems The molecular dynamics approach to calculate interfacial thermal resistance (ITR) A review of experimental results in the field of heat pipes and two-phase flows in thermosyphons Microscale convective heat transfer with gaseous flow in ducts The application of the lattice Boltzmann method for thermal microflows A numerical method for resolving the problem of subcooled convective boiling flows in microchannel heat sinks Two-phase boiling flow and condensation heat transfer in mini/micro channels, and more Microscale and Nanoscale Heat Transfer: Analysis, Design, and Applications addresses the need for thermal packaging and management for use in cooling electronics and serves as a resource for researchers, academicians, engineers, and other professionals working in the area of heat transfer, microscale and nanoscale science and engineering, and related industries.

Encyclopedia Of Two-phase Heat Transfer And Flow Ii: Special Topics And Applications - Volume 1: Special Topics In Boiling In... Encyclopedia Of Two-phase Heat Transfer And Flow Ii: Special Topics And Applications - Volume 1: Special Topics In Boiling In Microchannels (Hardcover)
John R. Thome, Jungho Kim
R9,007 Discovery Miles 90 070 Ships in 10 - 15 working days

The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopedia of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat transfer and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.

Encyclopedia Of Two-phase Heat Transfer And Flow Ii: Special Topics And Applications - Volume 2: Boiling Using Enhanced... Encyclopedia Of Two-phase Heat Transfer And Flow Ii: Special Topics And Applications - Volume 2: Boiling Using Enhanced Surfaces, Plate Heat Exchangers And Two-phase Devices (Hardcover)
John R. Thome, Jungho Kim
R11,517 Discovery Miles 115 170 Ships in 18 - 22 working days

The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopedia of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat transfer and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.

Encyclopedia Of Two-phase Heat Transfer And Flow Ii: Special Topics And Applications - Volume 3: Special Topics In Condensation... Encyclopedia Of Two-phase Heat Transfer And Flow Ii: Special Topics And Applications - Volume 3: Special Topics In Condensation (Hardcover)
John R. Thome, Jungho Kim
R6,310 Discovery Miles 63 100 Ships in 18 - 22 working days

The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopedia of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat transfer and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.

Encyclopedia Of Two-phase Heat Transfer And Flow Ii: Special Topics And Applications - Volume 4: Numerical Modeling Of... Encyclopedia Of Two-phase Heat Transfer And Flow Ii: Special Topics And Applications - Volume 4: Numerical Modeling Of Two-phase Flow And Heat Transfer (Hardcover)
John R. Thome, Jungho Kim
R6,904 Discovery Miles 69 040 Ships in 18 - 22 working days

The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopedia of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat transfer and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.

Encyclopedia Of Two-phase Heat Transfer And Flow I: Fundamentals And Methods - Volume 1: Modeling Of Gas Liquid Flow In Pipes... Encyclopedia Of Two-phase Heat Transfer And Flow I: Fundamentals And Methods - Volume 1: Modeling Of Gas Liquid Flow In Pipes (Hardcover)
John R. Thome, Yehuda Taitel, Dvora Barnea
R8,036 Discovery Miles 80 360 Ships in 18 - 22 working days

The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopediaa of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat tranfser and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.

Encyclopedia Of Two-phase Heat Transfer And Flow I: Fundamentals And Methods - Volume 2: Condensation Heat Transfer... Encyclopedia Of Two-phase Heat Transfer And Flow I: Fundamentals And Methods - Volume 2: Condensation Heat Transfer (Hardcover)
John R. Thome, Srinivas Garimella, Brian M Fronk
R10,365 Discovery Miles 103 650 Ships in 18 - 22 working days

The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopediaa of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat tranfser and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.

Encyclopedia Of Two-phase Heat Transfer And Flow I: Fundamentals And Methods - Volume 3: Flow Boiling In Macro And... Encyclopedia Of Two-phase Heat Transfer And Flow I: Fundamentals And Methods - Volume 3: Flow Boiling In Macro And Microchannels (Hardcover)
John R. Thome, Andrea Cioncolini
R9,567 Discovery Miles 95 670 Ships in 10 - 15 working days

The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopediaa of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat tranfser and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.

Encyclopedia Of Two-phase Heat Transfer And Flow I: Fundamentals And Methods - Volume 4: Special Topics In Pool And Flow... Encyclopedia Of Two-phase Heat Transfer And Flow I: Fundamentals And Methods - Volume 4: Special Topics In Pool And Flow Boiling (Hardcover)
John R. Thome, Mieczyslaw Poniewski, Beata Maciejewska, Robert Kaniowski, Robert Pastuszko, …
R5,617 Discovery Miles 56 170 Ships in 18 - 22 working days

The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopediaa of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat tranfser and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.

Compact Heat Exchangers for Energy Transfer Intensification - Low Grade Heat and Fouling Mitigation (Hardcover): Jiri Jaromir... Compact Heat Exchangers for Energy Transfer Intensification - Low Grade Heat and Fouling Mitigation (Hardcover)
Jiri Jaromir Klemes, Olga Arsenyeva, Petro Kapustenko, Leonid Tovazhnyanskyy
R7,609 Discovery Miles 76 090 Ships in 10 - 15 working days

Compact Heat Exchangers for Energy Transfer Intensification: Low-Grade Heat and Fouling Mitigation provides theoretical and experimental background on heat transfer intensification in modern heat exchangers. Emphasizing applications in complex heat recovery systems for the process industries, this book: Covers various issues related to low-grade heat, including waste heat from industry and buildings, storage and transport of thermal energy, and heat transfer equipment requirements Explains the basic principles, terminology, and heat transfer aspects of compactness, as well as the concept of intensified heat area targets at process integration Pays special attention to the mitigation of fouling in heat exchangers and their systems, describing fouling deposition and threshold fouling mechanisms Delivers a thoughtful analysis of the economics of implementation, considering energy-capital trade-off, capital cost estimation, and energy prices Presents illustrative case studies of specific applications in food and chemical production plants Compact Heat Exchangers for Energy Transfer Intensification: Low-Grade Heat and Fouling Mitigation not only highlights key developments in compact heat exchangers, but also instills a practical knowledge of the latest process integration and heat transfer enhancement methodologies.

Nanoparticle Heat Transfer and Fluid Flow (Hardcover, New): W.J. Minkowycz, E Sparrow, J P Abraham Nanoparticle Heat Transfer and Fluid Flow (Hardcover, New)
W.J. Minkowycz, E Sparrow, J P Abraham
R6,333 Discovery Miles 63 330 Ships in 10 - 15 working days

Featuring contributions by leading researchers in the field, Nanoparticle Heat Transfer and Fluid Flow explores heat transfer and fluid flow processes in nanomaterials and nanofluids, which are becoming increasingly important across the engineering disciplines. The book covers a wide range, from biomedical and energy conversion applications to materials properties, and addresses aspects that are essential for further progress in the field, including numerical quantification, modeling, simulation, and presentation.

Topics include:

  • A broad review of nanofluid applications, including industrial heat transfer, biomedical engineering, electronics, energy conversion, membrane filtration, and automotive
  • An overview of thermofluids and their importance in biomedical applications and heat-transfer enhancement
  • A deeper look at biomedical applications such as nanoparticle hyperthermia treatments for cancers
  • Issues in energy conversion from dispersed forms to more concentrated and utilizable forms
  • Issues in nanofluid properties, which are less predictable and less repeatable than those of other media that participate in fluid flow and heat transfer
  • Advances in computational fluid dynamic (CFD) modeling of membrane filtration at the microscale
  • The role of nanofluids as a coolant in microchannel heat transfer for the thermal management of electronic equipment
  • The potential enhancement of natural convection due to nanoparticles

Examining key topics and applications in nanoscale heat transfer and fluid flow, this comprehensive book presents the current state of the art and a view of the future. It offers a valuable resource for experts as well as newcomers interested in developing innovative modeling and numerical simulation in this growing field.

Advances in Industrial Heat Transfer (Hardcover, New): Alina Adriana Minea Advances in Industrial Heat Transfer (Hardcover, New)
Alina Adriana Minea
R6,344 Discovery Miles 63 440 Ships in 10 - 15 working days

Advances in Industrial Heat Transfer presents the basic principles of industrial heat transfer enhancement. Serving as a reference and guide for future research, this book presents a complete approach, from redesigning equipment to the use of nanofluids in industry. Based on the latest methods of the experiment and their interpretation, this book presents a unified conception of the industrial heat transfer process and procedures which will help decrease global energy consumption. Containing both theoretical and practical results, the book uses text, pictures, graphs, and definitions to illustrate points and highlight concepts.

Heat Conduction Using Green's Functions (Hardcover, 2nd edition): Kevin Cole, James Beck, A. Haji-Sheikh, Bahman Litkouhi Heat Conduction Using Green's Functions (Hardcover, 2nd edition)
Kevin Cole, James Beck, A. Haji-Sheikh, Bahman Litkouhi
R5,403 Discovery Miles 54 030 Ships in 10 - 15 working days

Since its publication more than 15 years ago, Heat Conduction Using Green s Functions has become the consummate heat conduction treatise from the perspective of Green s functions and the newly revised Second Edition is poised to take its place. Based on the authors own research and classroom experience with the material, this book organizes the solution of heat conduction and diffusion problems through the use of Green s functions, making these valuable principles more accessible. As in the first edition, this book applies extensive tables of Green s functions and related integrals, and all chapters have been updated and revised for the second edition, many extensively.

Details how to access the accompanying Green s Function Library site, a useful web-searchable collection of GFs based on the appendices in this book

The book reflects the authors conviction that although Green s functions were discovered in the nineteenth century, they remain directly relevant to 21st-century engineers and scientists. It chronicles the authors continued search for new GFs and novel ways to apply them to heat conduction.

New features of this latest edition

  • Expands the introduction to Green s functions, both steady and unsteady
  • Adds a section on the Dirac Delta Function
  • Includes a discussion of the eigenfunction expansion method, as well as sections on the convergence speed of series solutions, and the importance of alternate GF
  • Adds a section on intrinsic verification, an important new tool for obtaining correct numerical values from analytical solutions

A main goal of the first edition was to make GFs more accessible. To facilitate this objective, one of the authors has created a companion Internet site called the Green s Function Library, a web-searchable collection of GFs. Based on the appendices in this book, this library is organized by differential equation, geometry, and boundary condition. Each GF is also identified and cataloged according to a GF numbering system. The library also contains explanatory material, references, and links to related sites, all of which supplement the value of Heat Conduction Using Green s Functions, Second Edition as a powerful tool for understanding."

Heat and Mass Transfer in Buildings (Hardcover, 2nd): Keith J. Moss Heat and Mass Transfer in Buildings (Hardcover, 2nd)
Keith J. Moss
R5,500 Discovery Miles 55 000 Ships in 10 - 15 working days

The second edition of this reliable text provides readers with a thorough understanding of the design procedures that are essential in designing new buildings and building refurbishment.

Covering the fundamentals of heat and mass transfer as essential underpinning knowledge, this edition has been thoroughly updated and reflects the need for new building design and building refurbishment to feature low energy consumption and sustainable characteristics.

New additions include:

  • extended and updated worked examples
  • two new appendices covering renewable energy systems and sustainable building engineering a " with startling conclusions.

This book is an invaluable guide for HND and degree level students of building services engineering, as well as building, built environment, building engineering and architecture courses.

Theory of Geostationary Satellites (Hardcover, 1989 ed.): Chong-Hung Zee Theory of Geostationary Satellites (Hardcover, 1989 ed.)
Chong-Hung Zee
R5,300 Discovery Miles 53 000 Ships in 18 - 22 working days

Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second order when compared to the predominant perturbations. This volume deals with the theory of geostationary satellites. It consists of seven chapters. Chapter 1 provides a general discussion including a brief history of geostationary satellites and their practical applications. Chapter 2 describes the Earth's gravitational potential field and the methodology of solving the geostationary satellite problem. Chapter 3 treats the effect of Earth's equatorial ellipticity (triaxiality) on a geostationary satellite. Chapter 4 deals with the effects of the Sun and Moon on the satellite's motion while Chapter 5 presents the combined influences of the Sun, Moon and solar radiation pressure. Chapter 6 describes various station-keeping techniques which may be used to make geostationary satellites practically stationary. Finally, Chapter 7 describes the verification of the theory developed in Chapters 3, 4 and 5 by utilizing the Early Bird synchronous satellite observed data as well as its numerically integrated results.

Convective Flow and Heat Transfer from Wavy Surfaces - Viscous Fluids, Porous Media, and Nanofluids (Paperback): Aroon Shenoy,... Convective Flow and Heat Transfer from Wavy Surfaces - Viscous Fluids, Porous Media, and Nanofluids (Paperback)
Aroon Shenoy, Mikhail Sheremet, Ioan Pop
R2,100 Discovery Miles 21 000 Ships in 10 - 15 working days

Convective Flow and Heat Transfer from Wavy Surfaces: Viscous Fluids, Porous Media, and Nanofluids addresses the wavy irregular surfaces in heat transfer devices. Fluid flow and heat transfer studies from wavy surfaces have received attention, since they add complexity and require special mathematical techniques. This book considers the flow and heat transfer characteristics from wavy surfaces, providing an understanding of convective behavioral changes.

Dynamics of Regenerative Heat Transfer (Hardcover): John A. Willmott Dynamics of Regenerative Heat Transfer (Hardcover)
John A. Willmott
R4,794 Discovery Miles 47 940 Ships in 10 - 15 working days

The author, a respected authority on heat recovery, provides up-to-date and comprehensive coverage of the modelling of the process of heat transfer embodied in regenerative devices. He brings together material on storage and thermal generators and gives great emphasis to non-linear problems including the representation of temperature dependence of thermophysical properties involved.; In ten dynamic chapters, you will find coverage of: the storage of heat in packing; the Single Blow problem; basic concepts in counterflow thermal regenerators; counterflow regenerators; finite conductivity models; non-linear models of counterflow regenerators; transient response of counterflow regenerators; and parallel flow regenerators. Bringing together material developed over the past twenty years, the book will be of great interest to mechanical and chemical engineers as well as applied mathematicians concerned with models of heat transfer processes.

Origin of Temporal (t > 0) Universe - Connecting with Relativity, Entropy, Communication, and Quantum Mechanics (Hardcover):... Origin of Temporal (t > 0) Universe - Connecting with Relativity, Entropy, Communication, and Quantum Mechanics (Hardcover)
Thomas N. Corns
R5,054 Discovery Miles 50 540 Ships in 10 - 15 working days

The essence of temporal universe creation is that any analytical solution has to comply with the boundary condition of our universe; dimensionality and causality constraints. The essence of this book is to show that everything has a price within our temporal (t > 0) universe; energy and time. In mathematics, every postulation needs proof; there exists a solution before searching for the solution. Yet science does not have seem to have a criterion as mathematics does; to prove first that a postulated science exists within our temporal universe. Without such a criterion, fictitious science emerges, as already have been happening in every day's event. In this book, the author has shown there exists a criterion for a postulated science whether or not it is existed within our universe. The author started this book from Einstein's relativity to the creation of our temporal universe. He has shown that every subspace within our universe is created by energy and time, in which subspace and time are coexisted. The important aspect is that every science has to satisfy the boundary condition of our universe; causality and dimensionality. Following up with temporal universe, the author has shown a profound relationship with the second law of thermodynamics. He examines the relationship between entropy with science as well as communication with quantum limited subspace throughout the book. The author discusses the paradox of Schroedinger's Cat (which has been debated by Einstein, Bohr, Schroedinger and many others since 1935) that triggered his discovering that Schroedinger's quantum mechanics is a timeless machine, in which he has disproved the fundamental principle of superposition within our universe. Since quantum mechanics is a virtual mathematics, he has shown that a temporal quantum machine can, in principle, be built on the top of a temporal platform. This book is intended for cosmologists, particle physicists, astrophysicists, quantum physicists, computer scientists, engineers, professors and students as a reference and research-oriented book.

Transport Phenomena in Dispersed Media (Hardcover): G. I. Kelbaliyev, D. B. Tagiyev, S.R. Rasulov Transport Phenomena in Dispersed Media (Hardcover)
G. I. Kelbaliyev, D. B. Tagiyev, S.R. Rasulov
R5,372 Discovery Miles 53 720 Ships in 10 - 15 working days

Transport Phenomena in Dispersed Media addresses the main problems associated with the transfer of heat, mass and momentum. The authors focus on the analytical solutions of the mass and heat transfer equations; the theoretical problems of coalescence, coagulation, aggregation and fragmentation of dispersed particles; the rheology of structured aggregate and kinetically stable disperse systems; the precipitation of particles in a turbulent flow; the evolution of the distribution function; the stochastic counterpart of the mass transfer equations; the dissipation of energy in disperse systems; and many other problems that distinguish this book from existing publications. Key Selling Features Covers all technological processes taking place in the oil and gas complex, as well as in the petrochemical industry Presents new original solutions for calculating design as well as for the development and implementation of processes of chemical technology Organized to first provide an extensive review of each chapter topic, solve specific problems, and then review the solutions with the reader Contains complex mathematical expressions for practical calculations Compares results obtained on the basis of mathematical models with experimental data

Advances in Numerical Heat Transfer, Volume 2 (Hardcover, Reissue): W. Minkowycz Advances in Numerical Heat Transfer, Volume 2 (Hardcover, Reissue)
W. Minkowycz
R9,871 Discovery Miles 98 710 Ships in 10 - 15 working days


Contents:
Preface; Contributors 1. High Performance Computing for Fluid Flow and Heat Transfer 2. Unstructured Finite Volume Methods for Multi-Mode Heat Transfer 3. Spectral Element Methods for Unsteady Fluid Flow and Heat Transfer in Complex Geometries: Methodology and Applications 4. Finite-Volume Method for Radiation Heat Transfer 5. Boundary Element Methods for Heat Conduction 6. Molecular Dynamics Method for Microscale Heat Transfer 7. Numerical Methods in Microscale Heat Transfer: Modeling of Phase-Change and Laser Interactions with Materials 8. Current Status of the use of Parrallel Computing in Turbulent Reacting Flows: Computations Involving Sprays, Scalar Monte Carlo Probability Density Function and Unstructured Grids 9. Overview of Current Computational Studies of Heat Transfer in Porous Media and Their Applications-Forced Convection and Multiphase Heat Transfer 10. Overview of Current Computational Studies of Heat Transfer in Porous Material and Their Applications-Natural and Mixed Convection 11. Recent Progress and Some Changes in Thermal Modeling of Electronic Systems; Index

Heat Transfer In Food Cooling Applications (Hardcover): Ibrahim Dincer Heat Transfer In Food Cooling Applications (Hardcover)
Ibrahim Dincer
R5,595 R2,224 Discovery Miles 22 240 Save R3,371 (60%) Ships in 10 - 15 working days


Series Information:
Series in Chemical and Mechanical Engineering

Turbomachinery Fluid Dynamics and Heat Transfer (Hardcover): Lynn Faulkner Turbomachinery Fluid Dynamics and Heat Transfer (Hardcover)
Lynn Faulkner; Chunill Hah
R5,499 Discovery Miles 54 990 Ships in 10 - 15 working days

This festschrift in honor of Professor Budugur Lakshminarayana's 60th birthday-based on the proceedings of a symposium on Turbomachinery Fluid Dynamics and Heat Transfer held recently at The Pennsylvania State University, University Park-provides authoritative and conclusive research results as well as new insights into complex flow features found in the turbomachinery used for propulsion, power, and industrial applications.
Explaining in detail compressors, heat transfer fields in turbines, computational fluid dynamics, and unsteady flows, Turbomachinery Fluid Dynamics and Heat Transfer covers:
Mixing mechanisms, annulus wall boundary layers, and the flow field in transonic turbocompressors
The numerical implementation of turbulence models in a computer code
Secondary flows, film cooling, and thermal turbulence modeling
The visualization method of modeling using liquid crystals
Innovative techniques in the computational modeling of compressor and turbine flows
measurement in unsteady flows as well as axial flows and compressor noise generation
And much more
Generously illustrated and containing key bibliographic citations, Turbomachinery Fluid Dynamics and Heat Transfer is an indispensable resource for mechanical, design, aerospace, marine, manufacturing, materials, industrial, and reliability engineers; and upper-level undergraduate and graduate students in these disciplines.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Thermal Radiative Transfer and…
M.Q. Brewster Hardcover R5,351 Discovery Miles 53 510
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, … Hardcover R4,671 Discovery Miles 46 710
Combustion Optimization Based on…
Hao Zhou, Kefa Cen Hardcover R2,682 Discovery Miles 26 820
Advances in Heat Transfer, Volume 53
Ephraim M. Sparrow, John Patrick Abraham, … Hardcover R5,277 Discovery Miles 52 770
An Introduction to Transport Phenomena…
David R. Gaskell Hardcover R6,035 Discovery Miles 60 350
Heat Transfer Engineering - Fundamentals…
C. Balaji, Balaji Srinivasan, … Paperback R2,850 Discovery Miles 28 500
Materials for Advanced Heat Transfer…
S. J. Vijay, Brusly Solomon, … Paperback R5,072 Discovery Miles 50 720
Advances in Solar Heating and Cooling
Ruzhu Wang, Tianshu Ge Hardcover R5,700 R5,274 Discovery Miles 52 740
Heat Transfer and Fluid Flow in…
Satish Kandlikar, Srinivas Garimella, … Paperback R2,412 R2,280 Discovery Miles 22 800
Advances in Heat Transfer, Volume 47
Ephraim M. Sparrow, John Patrick Abraham, … Hardcover R4,679 Discovery Miles 46 790

 

Partners