![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Heat transfer processes
Heat is a branch of thermodynamics that occupies a unique position due to its involvement in the field of practice. Being linked to the management, transport and exchange of energy in thermal form, it impacts all aspects of human life and activity. Heat transfers are, by nature, classified as conduction, convection (which inserts conduction into fluid mechanics) and radiation. The importance of these three transfer methods has resulted - justifiably - in a separate volume being afforded to each of them, with the subject of convection split into two volumes. This third volume is dedicated to convection, more specifically, the foundations of convective transfers. Various angles are considered to cover this topic, including empirical relationships and analytically approaching boundary layers, including the integral methods and numerical approaches. The problem of heat exchangers is presented, without aiming to be an exhaustive treatise. Heat Transfer 3 combines a basic approach with a deeper understanding of the discipline and will therefore appeal to a wide audience, from technician to engineer, from doctoral student to teacher-researcher.
Advances in Heat Transfer, Volume 53 in this long-running serial, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors.
Heat Transfer in the Chemical, Food and Pharmaceutical Industries, a new volume in the Industrial Equipment for Chemical Engineering set, includes thirteen independent volumes on how to perform the selection and calculation of equipment involved in the thirteen basic operations of process engineering, offering readers reliable and simple, easy to follow methods. Throughout these concise and easy-to-use books, the author uses his vast practical experience and precise knowledge of global research to present an in-depth study of a variety of aspects within the field of chemical engineering.
This is a comprehensive and authoritative book on the subject aimed at students of mechanical, chemical, aeronautical, production and metallurgical engineering. The book underlines the objective of the understanding of the physical phenomena involved and the ability to formulate and to solve typical problems. With a view to help in better understanding of the phenomena of mass transfer, an effort has also been made to identify the similarities in both qualitative and quantitative approach between heat and mass transfer. The subject matter has been developed from scratch to a sufficiently advanced stage in a logical and coherent manner with neat illustrations and solved examples. Problems and solutions appended to each chapter should further help for better comprehension of the subjects. Properly designed experiments included in the book should further help in the teaching of basic principles.
"Process Heat Transfer" is a reference on the design and
implementation of industrial heat exchangers. It provides the
background needed to understand and master the commercial software
packages used by professional engineers in the design and analysis
of heat exchangers. This book focuses on types of heat exchangers
most widely used by industry: shell-and-tube exchangers (including
condensers, reboilers and vaporizers), air-cooled heat exchangers
and double-pipe (hairpin) exchangers. It provides a substantial
introduction to the design of heat exchanger networks using pinch
technology, the most efficient strategy used to achieve optimal
recovery of heat in industrial processes.
Advances in Heat Transfer fills the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles that are from a broader scope than in traditional journals or texts. The articles, which serve as a broad review for experts in the field, are also of great interest to non-specialists who need to keep up-to-date on the results of the latest research. This serial is essential reading for all mechanical, chemical, and industrial engineers working in the field of heat transfer, or in graduate schools or industry.
"Conjugate Heat and Mass Transfer in Heat MassExchanger Ducts"
bridges the gap between fundamentals and recent discoveries, making
it a valuable tool for anyone looking to expand their knowledge of
heat exchangers. The first book on the market to cover conjugate
heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes
beyond the basics to cover recent advancements in equipment for
energy use and environmental control (such as heat and moisture
recovery ventilators, hollow fiber membrane modules for
humidification/dehumidification, membrane modules for air
purification, desiccant wheels for air dehumidification and energy
recovery, and honeycomb desiccant beds for heat and moisture
control). Explaining the data behind and the applications of
conjugated heat and mass transfer allows for the design, analysis,
and optimization of heat and mass exchangers. Combining this
recently discovered data into one source makes it an invaluable
reference for professionals, academics, and other interested
parties.
This book gathers selected papers from the 16th UK Heat Transfer Conference (UKHTC2019), which is organised every two years under the aegis of the UK National Heat Transfer Committee. It is the premier forum in the UK for the local and international heat transfer community to meet, disseminate ongoing work, and discuss the latest advances in the heat transfer field. Given the range of topics discussed, these proceedings offer a valuable asset for engineering researchers and postgraduate students alike.
Conjugate methods, also sometimes referred to as coupled equations, are used to analyze the inter-dependent relationship of two sets of governing equations--for example in understanding the movement of heat across the boundary from one object to another or the transfer of energy from a moving fluid to a surrounding elastic medium. This will be the first definitive text in years to offer a broad overview of conjugate methods and their more typical applications, with an emphasis on the advantages and benefits of this type of engineering analysis. Students and professionals alike will gain a better understanding of the practical uses for conjugate mathematical methods in solving often intractable problems in heat transfer and fluid mechanics. Ample end of chapter examples and problem sets will help to reinforce the theory and knowledge presented in the book. Some highlights are: Reviews basics of heat conduction in solids and convective heat transfer Offers both analytic and numerical methods for solving conjugate boundary condition problems Numerous detailed examples of applications in industrial problems, biomechanical systems, and other areas of heat transfer and fluid mechanics End of chapter problems and Solutions Manual
Heat Transfer has been written for undergraduate students in mechanical, nuclear, and chemical engineering programs. The success of Anthony Mill's Basic Heat and Mass Transfer and Heat Transfer continues with two new editions for 1999. The careful ordering of topics in each chapter leads students gradually from introductory concepts to advanced material, eliminating road blocks to developing solid engineering problem-solving skills. Mathematical concepts, from earlier courses, are reviewed on as needed basis refreshing students' memories, and the computational software integrated with the text allows them to obtain reliable numerical results. The integrated coverage of design principles and the wide variety of exercises based on current heat and mass transfer technologies encourages students to think like engineers, better preparing them for the engineering workplace.
Written by a team of experts, Advances in Flowmeter Technology surveys the full range of modern flowmeters for product managers, strategic planners, engineers, distributors, and students. The origins, principles of operation,controls and instrumentation, and the relative advantages of each major flowmeter type are thoroughly explained. Extensive coverage of new types that employ cutting-edge technologies - such as coriolis, magnetic, ultrasonic, vortex, thermal flowmeters - is provided. The text includes comparative examples, placing these new types of meters in the context of more traditional ones, such as differential pressure, turbine, and positive displacement flowmeters.
Presenting the basic mechanisms for transfer of heat, this book gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers. This book is aimed to be used in both undergraduate and graduate courses in heat transfer and thermal engineering. It can successfully be used in R & D work and thermal engineering design in industry and by consultancy firms
Transport phenomena are the processes and rules by which heat, mass, and momentum move through and between materials and systems. Along with thermodynamics, mechanics, and electromagnetism, this body of knowledge and theory forms the core principals of all physical systems and is essential to all engineering disciplines. This new edition of a classic work on how transport phenomena behave in materials and materials systems will provide expanded coverage and up-to-date theory and knowledge from today's research on heat transfer and fluid behavior, with ample examples of practical applications to materials processing and engineering. Professional engineers and students alike will find one of the clearest and most accessible approaches to an often difficult and challenging subject. Logical pedagogy, with clear applications to real materials engineering problems will make more vivid the abstract body of knowledge that comprises today's understanding of transport phenomena. Readers will find: A new chapter on boiling and condensationRevised chapters on heat transport, mass transport in solid state and mass transport in fluidsRevised and expanded end-of-chapter problems and exercisesS.I. Units throughoutExtensive Appendices of standard materials propertiesFor classroom use, a Solutions Manual is available
This book presents the latest findings on the subject of combustion optimization based on computational intelligence. It covers a broad range of topics, including the modeling of coal combustion characteristics based on artificial neural networks and support vector machines. It also describes the optimization of combustion parameters using genetic algorithms or ant colony algorithms, an online coal optimization system, etc. Accordingly, the book offers a unique guide for researchers in the areas of combustion optimization, NOx emission control, energy and power engineering, and chemical engineering.
Heat Recovery Steam Generator Technology is the first fully comprehensive resource to provide readers with the fundamental information needed to understand HRSGs. The book's highly experienced editor has selected a number of key technical personnel to contribute to the book, also including burner and emission control device suppliers and qualified practicing engineers. In the introduction, various types of HRSGs are identified and discussed, along with their market share. The fundamental principles of the technology are covered, along with the various components and design specifics that should be considered. Its simple organization makes finding answers quick and easy. The text is fully supported by examples and case studies, and is illustrated by photographs of components and completed power plants to further increase knowledge and understanding of HRSG technology.
This book offers broad, detailed coverage of theoretical developments in induction and direct resistance heating and presents new material on the solution of problems in the application of such heating. The physical basis of induction and conduction heating processes is explained and electromagnetic phenomena in direct resistance and induction heating of flat workpieces and cylindrical bodies are examined in depth. The calculation of electrical and energetic characteristics of induction and conduction heating systems is then thoroughly reviewed. The final two chapters consider analytical solutions and numerical modeling of problems in the application of induction and direct resistance heating, providing industrial engineers with the knowledge needed in order to use numerical tools in the modern design of installations. Other engineers, scientists and technologists will find the book to be an invaluable reference that will assist in the efficient utilization of electrical energy.
The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopedia of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat transfer and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.
The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopedia of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat transfer and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.
This book provides important insights into the combustion behavior of novel energy crops and agricultural fuels. It describes a new experimental approach to combustion evaluation, involving fundamental, bench-scale and commercial-scale studies. The studies presented were conducted on two representative biomass energy crops: a woody biomass poplar (Populus sp. or poplar) and an herbaceous biomass brassica (Brassica carinata or brassica). Moreover, agricultural residues of Manihot esculenta or cassava were also analyzed. The main accomplishments of this work are threefold. Firstly, it offers an extensive characterization of the above-mentioned fuels, their ash chemistry and their emissions of both solid particles and gaseous compounds that form at typical grate combustion conditions. Secondly, it presents an in-depth analysis of ash fractionation processes for major ash species. Thirdly, it describes the role of some critical and volatile key elements (K, Cl, S and P) in grate-fired combustion systems and elucidates the main differences in the ash chemistry during combustion of Si-rich and P-rich fuels. All in all, this work provides novel insights on the basic and fundamental mechanisms of biomass grate combustion with a special focus on ash transformation and highlights important issues and recommendations that need to be considered for an appropriate conversion of ash-rich fuels and for the development of future technology in the context of both small- and medium-scale biomass-based heat and power production.
Encompassing both practical applications and recent research developments, this book takes the reader from fundamental physics, through cutting-edge new designs of ejectors for refrigeration. The authors' unique vision marries successful design, system optimization, and operation experience with insights on the application of cutting-edge Computational Fluid Dynamics (CFD) models. This robust treatment leads the way forward in developing improved ejector technologies. The book covers ejectors used for heat powered refrigeration and for expansion work recovery in compression refrigerators, with special emphasis on two-phase flows of "natural" fluids within the ejector, i.e. steam and carbon dioxide. It features worked examples, detailed research results, and analysis tools.
The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopedia of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat transfer and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.
Heat is a branch of thermodynamics that occupies a unique position due to its involvement in the field of practice. Being linked to the management, transport and exchange of energy in thermal form, it impacts all aspects of human life and activity. Heat transfers are, by nature, classified as conduction, convection (which inserts conduction into fluid mechanics) and radiation. The importance of these three transfer methods has resulted - justifiably - in a separate volume being afforded to each of them. This first volume is dedicated to thermal conduction, and, importantly, assumes an analytical approach to the problems presented, and recalls the fundamentals. Heat Transfer 1 combines a basic approach with a deeper understanding of the discipline and will therefore appeal to a wide audience, from technician to engineer, from doctoral student to teacher-researcher.
This book presents the necessary fundamental knowledge in the research, development, design, selection, and application of desiccant heating, ventilating, and air-conditioning systems. It covers the established installations in different climatic conditions and building types. In addition, advanced performance evaluation techniques are presented, covering thermodynamic, economic, and environmental aspects. Hence, the book is an important resource for undergraduate and graduate students, design and installation engineers, researchers and scientists, building owners and occupants, and energy and environmental policy makers.
The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopedia of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat transfer and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc. |
![]() ![]() You may like...
Heat And Mass Transfer Data Book
C.P. Kothandaraman, S.V. Subramanyan
Paperback
R879
Discovery Miles 8 790
Advances in Heat Transfer, Volume 39
George A. Greene, Young I. Cho, …
Hardcover
R6,468
Discovery Miles 64 680
Encyclopedia Of Two-phase Heat Transfer…
John R. Thome, Mieczyslaw Poniewski, …
Hardcover
R6,092
Discovery Miles 60 920
Encyclopedia Of Two-phase Heat Transfer…
John R. Thome, Andrea Cioncolini
Hardcover
R9,768
Discovery Miles 97 680
Encyclopedia Of Two-phase Heat Transfer…
John R. Thome, Yehuda Taitel, …
Hardcover
R8,718
Discovery Miles 87 180
Encyclopedia Of Two-phase Heat Transfer…
John R. Thome, Srinivas Garimella, …
Hardcover
R11,247
Discovery Miles 112 470
|