Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Heat transfer processes
Analytical Heat Transfer explains how to analyze and solve conduction, convection, and radiation heat transfer problems. It enables students to tackle complex engineering heat transfer problems prevalent in practice. Covering heat transfer in high-speed flows and unsteady highly turbulent flows, the book also discusses enhanced heat transfer in channels, heat transfer in rotating channels, numerical modeling for turbulent flow heat transfer, and thermally developing heat transfer in a circular tube. The second edition features new content on Duhamel's superposition method, Green's function method for transient heat conduction, finite-difference method for steady state and transient heat conduction in cylindrical coordinates, and laminar mixed convection. It includes two new chapters on laminar-to-turbulent transitional heat transfer and turbulent flow heat transfer enhancement, in addition to end-of-chapter problems. The book bridges the gap between basic heat transfer undergraduate courses and advanced heat transfer graduate courses for a single semester of intermediate heat transfer, advanced conduction/radiation heat transfer, or convection heat transfer. Features: Focuses on analyzing and solving classic heat transfer problems in conduction, convection, and radiation Covers 2-D and 3-D view factor evaluation, combined radiation with conduction and/or convection, and gas radiation optically thin and optically thick limits Features updated content and new chapters on mass and heat transfer analogy, thermally developing heat transfer in a circular tube, laminar-turbulent transitional heat transfer, unsteady highly turbulent flows, enhanced heat transfer in channels, heat transfer in rotating channels, and numerical modeling for turbulent flow heat transfer Provides step-by-step mathematical formula derivations, analytical solution procedures, and demonstration examples Includes end-of-chapter problems with an accompanying Solutions Manual for instructors This book is ideal for undergraduate and graduate students studying basic heat transfer and advanced heat transfer.
* Provides an overview of review articles on topics of current interest
Advances in Heat Transfer fills the information gap between
regularly scheduled journals and university level textbooks by
providing in-depth review articles over a broader scope than in
journals or texts. The articles, which serve as a broad review for
experts in the field, will also be of great interest to
non-specialists who need to keep up to date with the results of the
latest research. It is essential reading for all mechanical,
chemical and industrial engineers working in the field of heat
transfer, graduate schools or industry.
This book presents new methods of numerical modelling of tube heat exchangers, which can be used to perform design and operation calculations of exchangers characterized by a complex flow system. It also proposes new heat transfer correlations for laminar, transition and turbulent flows. A large part of the book is devoted to experimental testing of heat exchangers, and methods for assessing the indirect measurement uncertainty are presented. Further, it describes a new method for parallel determination of the Nusselt number correlations on both sides of the tube walls based on the nonlinear least squares method and presents the application of computational fluid dynamic (CFD) modeling to determine the air-side Nusselt number correlations. Lastly, it develops a control system based on the mathematical model of the car radiator and compares this with the digital proportional-integral-derivative (PID) controller. The book is intended for students, academics and researchers, as well as for designers and manufacturers of heat exchangers.
Heat transfer laws for conduction, radiation and convection change when the dimensions of the systems in question shrink. The altered behaviours can be used efficiently in energy conversion, respectively bio- and high-performance materials to control microelectronic devices. To understand and model those thermal mechanisms, specific metrologies have to be established. This book provides an overview of actual devices and materials involving micro-nanoscale heat transfer mechanisms. These are clearly explained and exemplified by a large spectrum of relevant physical models, while the most advanced nanoscale thermal metrologies are presented.
"Advances in Heat Transfer" fills the information gap between
regularly scheduled journals and university-level textbooks by
providing in-depth review articles over a broader scope than in
journals or texts. The articles, which serve as a broad review for
experts in the field, will also be of great interest to
non-specialists who need to keep up-to-date with the results of the
latest research.This serialis essential reading for all mechanical,
chemical and industrial engineers working in the field of heat
transfer, graduate schools or industry.
CLIFFORD K. HOAND STEPHEN W. WEBB Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, USA Gas and vapor transport in porous media occur in a number of important applications includingdryingofindustrialandfoodproducts,oilandgasexploration,environm- tal remediation of contaminated sites, and carbon sequestration. Understanding the fundamental mechanisms and processes of gas and vapor transport in porous media allows models to be used to evaluate and optimize the performance and design of these systems. In this book, gas and vapor are distinguished by their available states at stan- ? dard temperature and pressure (20 C, 101 kPa). If the gas-phase constituent can also exist as a liquid phase at standard temperature and pressure (e. g. , water, ethanol, toluene, trichlorothylene), it is considered a vapor. If the gas-phase constituent is non-condensable at standard temperature and pressure (e. g. , oxygen, carbon di- ide, helium, hydrogen, propane), it is considered a gas. The distinction is important because different processes affect the transport and behavior of gases and vapors in porous media. For example, mechanisms specific to vapors include vapor-pressure lowering and enhanced vapor diffusion, which are caused by the presence of a g- phase constituent interacting with its liquid phase in an unsaturated porous media. In addition, the "heat-pipe" exploits isothermal latent heat exchange during evaporation and condensation to effectively transfer heat in designed and natural systems.
The subject of the book is uid dynamics and heat transfer in micro-channels. This problem is important for understanding the complex phenomena associated with single- and two-phase ows in heated micro-channels. The challenge posed by high heat uxes in electronic chips makes thermal management a key factor in the development of these systems. Cooling of mic- electronic components by new cooling technologies, as well as improvement of the existing ones, is becoming a necessity as the power dissipation levels of integrated circuits increases and their sizes decrease. Miniature heat sinks with liquid ows in silicon wafers could signi cantly improve the performance and reliability of se- conductor devices. The improvements are made by increasing the effective thermal conductivity, by reducing the temperature gradient across the wafer, by reducing the maximum wafer temperature, and also by reducing the number and intensity of localized hot spots. A possible way to enhance heat transfer in systems with high power density is to change the phase in the micro-channels embedded in the device. This has motivated a number of theoretical and experimental investigations covering various aspects of heat transfer in micro-channel heat sinks with phase change. The ow and heat transfer in heated micro-channels are accompanied by a n- ber of thermohydrodynamic processes, such as liquid heating and vaporization, bo- ing, formation of two-phase mixtures with a very complicated inner structure, etc., which affect signi cantly the hydrodynamic and thermal characteristics of the co- ing systems.
The book presents - based on the most recent research and development results worldwide - the perspectives of new propulsion concepts such as electric cars with batteries and fuel cells, and furthermore plug in hybrids with conventional and alternative fuels. The propulsion concepts are evaluated based on specific power, torque characteristic, acceleration behaviour, specific fuel consumption and pollutant emissions. The alternative fuels are discussed in terms of availability, production, technical complexity of the storage on board, costs, safety and infrastructure. The book presents summarized data about vehicles with electric and hybrid propulsion. The propulsion of future cars will be marked by diversity - from compact electric city cars and range extender vehicles for suburban and rural areas up to hybrid or plug in SUVs, Pick ups and luxury class automobiles.
This book provides a compilation of important optical techniques applied to experiments in heat and mass transfer, multiphase flow and combustion. The emphasis of this book is on the application of these techniques to various engineering problems. The contributions are aiming to provide practicing engineers, both in industry and research, with the recent state-of-science in the application of advanced optical measurements. The book is written by selected specialists representing leading experts in this field who present new information for the possibilities of these techniques and give stimulation of new ideas for their application.
Solar Thermal Conversion Technologies for Industrial Process Heating presents a comprehensive look at the use of solar thermal energy in industrial applications, such as textiles, chemical processing, and food. The successful projects implemented in a variety of industries are shown in case studies, alongside performance assessment methodologies. The book will be useful for researchers, graduate students, and industry professionals with an aim to promote mutual understanding between sectors dealing with solar thermal energy. The book includes various solar thermal energy conversion technologies and new techniques and applications of solar collectors in industrial sectors. Features: Covers the key designs and novel technologies employed in the processing industries. Discusses challenges in the incorporation of the solar thermal system in industrial applications. Explores the techno-economic, environmental impact, and life cycle analysis, with government policies for promoting the system. Includes real-world case studies. Presents chapters written by global experts in the field. The book will be useful for researchers, graduate students, and industry professionals with an aim to promote mutual understanding between sectors dealing with solar thermal energy.
Heat transfer is the exchange of heat energy between a system and
its surrounding environment, which results from a temperature
difference and takes place by means of a process of thermal
conduction, mechanical convection, or electromagnetic
radiation.
As the field of Microsystems expands into more disciplines and new
applications such as RF-MEMS, Optical MEMS and Bio-MEMS, thermal
management is becoming a critical issue in the operation of many
microdevices, including microelectronic chips.
Advances in Heat Transfer fills the information gap between
regularly scheduled journals and university-level textbooks by
providing in-depth review articles over a broader scope than in
journals or texts. The articles, which serve as a broad review for
experts in the field, will also be of great interest to
non-specialists who need to keep up-to-date with the results of the
latest research. This serial is essential reading for all
mechanical, chemical and industrial engineers working in the field
of heat transfer, graduate schools or industry.
Heat exchangers with minichannel and microchannel flow passages are
becoming increasingly popular because of their ability to remove
large heat fluxes under single-phase and two-phase applications.
This book serves as a sourcebook for those individuals involved in
the design processes of microchannel flow passages in a heat
exchanger.
Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than is allowable in either journals or texts.
Provides comprehensive coverage of recent advances in combustion technology Explains definite concepts about the design and development in combustion systems Captures developments relevant for aerospace area including gel propellant, aluminium based propellants, gasification and gas turbine Aims to introduce the combustion system in different industries Expounds novel combustion systems with reference to pertinent renewable technologies
Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than is allowablein either journals or texts.
Advances in Heat Transfer fills the information gap between
regularly scheduled journals and university level textbooks by
providing in-depth review articles over a broader scope than in
journals or texts. The articles, which serve as a broad review for
experts in the field, will also be of great interest to
non-specialists who need to keep up-to-date with the results of the
latest research. It is essential reading for all mechanical,
chemical and industrial engineers working in the field of heat
transfer, graduate schools or industry.
This unique book, the first published on the subject, provides an
introduction to the theory of macrotransport processes, a
comprehensive effective-medium theory of transport phenomena in
heterogeneous systems. The text begins with a relatively simple
approach to the basic theory before turning to a more formal
theoretical treatment which is extended in scope in each successive
chapter.
Engineering applications offer benefits and opportunities across a range of different industries and fields. By developing effective methods of analysis, results and solutions are produced with higher accuracy. Numerical and Analytical Solutions for Solving Nonlinear Equations in Heat Transfer is an innovative source of academic research on the optimized techniques for analyzing heat transfer equations and the application of these methods across various fields. Highlighting pertinent topics such as the differential transformation method, industrial applications, and the homotopy perturbation method, this book is ideally designed for engineers, researchers, graduate students, professionals, and academics interested in applying new mathematical techniques in engineering sciences. Topics Covered: Adomian Decomposition Method Differential Transformation Method Homotopy Analysis Method Homotopy Perturbation Method Industrial applications Variational Iteration Method
1. Enables first year mechanical engineering students to gain a core foundational knowledge in all key areas 2. Provides worked examples of exam-style questions 3. Includes chapters by leading experts experienced in teaching first year students in all disciplines of mechanical engineering 4. Gives a thorough grounding in the following core engineering topics: thermodynamics, fluid mechanics, solid mechanics, dynamics, electricals and electronics, and materials science
This book is a generalist textbook; it is designed for anybody interested in heat transmission, including scholars, designers and students. Two criteria constitute the foundation of Annaratone s books, including the present one. The first one consists of indispensable scientific rigor without theoretical exasperation. The inclusion in the book of some theoretical studies, even if admirable for their scientific rigor, would have strengthened the scientific foundation of this publication, yet without providing the reader with further applicable know-how. The second criterion is to deliver practical solution to operational problems. This criterion is fulfilled through equations based on scientific rigor, as well as a series of approximated equations, leading to convenient and practically acceptable solutions, and through diagrams and tables. When a practical case is close to a well defined theoretical solution, corrective factors are shown to offer simple and correct solutions to the problem.
The text provides in-depth knowledge about recent advances in solar collector system, photovoltaic system, role of thermal energy systems in buildings, phase change materials, geothermal energy, biofuels, thermal management systems for EV in social and industrial applications. It further aims toward the inclusion of innovation and implementation of strategies for CO2 emission reduction through the reduction of energy consumption using conventional sources. This book: Presents the latest advances in the field of thermal energy storage, solar energy development, geothermal energy, and hybrid energy applications for green development. Highlights the importance of innovation and implementation of strategies for CO2 emission reduction through the reduction of energy consumption using sustainable technologies and methods. Discusses design development, life cycle assessment, modeling, and simulation of thermal energy systems in detail. Synergize exploration related to the various properties and functionalities through extensive theoretical and numerical modeling present in the energy sector. Explores opportunities, challenges, future perspectives, and approaches toward gaining sustainability through renewable energy resources. The text discusses the fundamentals of thermal energy and its applications in a comprehensive manner. It further covers advancements in solar thermal, and photovoltaic systems. The text highlights the contribution of geothermal energy conversion systems to sustainable development. It showcases the design and optimization of ground source heat pumps for space conditioning and presents modeling and simulation of the thermal energy systems for design optimization. It will serve as an ideal reference text for senior undergraduate, graduate students, and academic researchers in the fields including mechanical engineering, environmental engineering, and energy engineering.
Presents a comprehensive review of classic hypersonic flow from the Newtonian theory to blast wave analogue. Introduces nonequilibrium chemical kinetics to gas dynamics for hypersonic flows in the high-enthalpy state. Integrates quantum mechanics to high-enthalpy hypersonic flows including dissociation and ionization. Covers the complete heat transfer process with radiative energy transfer for thermal protection of earth reentry vehicle. Develops and verifies the interdisciplinary governing equations for understanding and analyzing realistic hypersonic flows. |
You may like...
Encyclopedia Of Two-phase Heat Transfer…
John R. Thome, Jungho Kim
Hardcover
R12,182
Discovery Miles 121 820
Encyclopedia Of Two-phase Heat Transfer…
John R. Thome, Jungho Kim
Hardcover
R6,664
Discovery Miles 66 640
Two-Phase Flow in Refrigeration Systems
Junjie Gu, Shujun Wang, …
Hardcover
Encyclopedia Of Two-phase Heat Transfer…
John R. Thome, Mieczyslaw Poniewski, …
Hardcover
R5,929
Discovery Miles 59 290
Encyclopedia Of Two-phase Heat Transfer…
John R. Thome, Andrea Cioncolini
Hardcover
R9,478
Discovery Miles 94 780
Advances in Heat Transfer and Thermal…
Chuang Wen, Yuying Yan
Hardcover
R5,645
Discovery Miles 56 450
|