![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Heat transfer processes
"Process Heat Transfer" is a reference on the design and
implementation of industrial heat exchangers. It provides the
background needed to understand and master the commercial software
packages used by professional engineers in the design and analysis
of heat exchangers. This book focuses on types of heat exchangers
most widely used by industry: shell-and-tube exchangers (including
condensers, reboilers and vaporizers), air-cooled heat exchangers
and double-pipe (hairpin) exchangers. It provides a substantial
introduction to the design of heat exchanger networks using pinch
technology, the most efficient strategy used to achieve optimal
recovery of heat in industrial processes.
"Heat Transfer: Lessons with Examples Solved by Matlab instructs students in heat transfer, and cultivates independent and logical thinking ability. The book focuses on fundamental concepts in heat transfer and can be used in courses in Heat Transfer, Heat and Mass Transfer, and Transport Processes. It uses numerical examples and equation solving to clarify complex, abstract concepts such as Kirchhoff's Law in Radiation. Several features characterize this textbook: It includes real-world examples encountered in daily life; Examples are mostly solved in simple Matlab codes, readily for students to run numerical experiments by cutting and pasting Matlab codes into their PCs; In parallel to Matlab codes, some examples are solved at only a few nodes, allowing students to understand the physics qualitatively without running Matlab codes; It places emphasis on ""why"" for engineers, not just ""how"" for technicians. Adopting instructors will receive supplemental exercise problems, as well as access to a companion website where instructors and students can participate in discussion forums amongst themselves and with the author. Heat Transfer is an ideal text for students of mechanical, chemical, and aerospace engineering. It can also be used in programs for civil and electrical engineering, and physics. Rather than simply training students to be technicians, Heat Transfer uses clear examples, structured exercises and application activities that train students to be engineers. The book encourages independent and logical thinking, and gives students the skills needed to master complex, technical subject matter. " " Tien-Mo Shih received his Ph.D. from the University of California, Berkeley, and did his post-doctoral work at Harvard University. From 1978 until his retirement in 2011 he was an Associate Professor of Mechanical Engineering at the University of Maryland, College Park, where he taught courses in thermo-sciences and numerical methods. He remains active in research in these same areas. His book, Numerical Heat Transfer, was translated into Russian and Chinese, and subsequently published by both the Russian Academy of Sciences and the Chinese Academy of Sciences. He has published numerous research papers, and has been invited regularly to write survey papers for Numerical Heat Transfer Journal since 1980s."
This book presents concepts, ideas and methods in convective heat transfer in easily understandable form. The book starts the reader from the fundamentals and progresses to the application of these to practical engineering problems and to interface with modern research, new ideas, products and processes.
The most thorough and up-to-date coverage of heat transfer concepts and applications The Heat Transfer Handbook provides succinct hard data, formulas, and specifications for the critical aspects of heat transfer, offering a reliable, hands-on resource for solving day-to-day issues across a variety of applications. From the basics to the state of the art, this authoritative reference is the complete single-source handbook of need-to-know information in the industry. With today’s professionals in mind, thirty world-renowned experts contribute cutting-edge concepts and applications, as well as insights into the current state of the field and the latest technologies. Standout features of the handbook include the most comprehensive coverage available on contact resistance, and well-conceived, timely material on heat transfer in electronic components. An accompanying CD-ROM containing the NIST Thermodynamic and Transport Properties of Pure Fluids Database: Version 5.1 provides computer formulations with the most up-to-date values for thermophysical properties of fluids and materials. For busy engineers and researchers, the Heat Transfer Handbook is the fast and accurate solution to their everyday needs.
Heat transfer analysis is a problem of major significance in a vast range of industrial applications. These extend over the fields of mechanical engineering, aeronautical engineering, chemical engineering and numerous applications in civil and electrical engineering. If one considers the heat conduction equation alone the number of practical problems amenable to solution is extensive. Expansion of the work to include features such as phase change, coupled heat and mass transfer, and thermal stress analysis provides the engineer with the capability to address a further series of key engineering problems. The complexity of practical problems is such that closed form solutions are not generally possible. The use of numerical techniques to solve such problems is therefore considered essential, and this book presents the use of the powerful finite element method in heat transfer analysis. Starting with the fundamental general heat conduction equation, the book moves on to consider the solution of linear steady state heat conduction problems, transient analyses and non--linear examples. Problems of melting and solidification are then considered at length followed by a chapter on convection. The application of heat and mass transfer to drying problems and the calculation of both thermal and shrinkage stresses conclude the book. Numerical examples are used to illustrate the basic concepts introduced. This book is the outcome of the teaching and research experience of the authors over a period of more than 20 years.
This book is a revision and extension of Frank White's Heat Transfer. The new text adds the topic of mass transfer and improves the original topics based on new literature and faculty suggestions. A highlight of the book is the addition of 22 new Special Design Projects covering conduction, free and forced convection, radiation, condensation, boiling, and heat exchangers. Numerous examples and problems have been added to the text to make it an improved learning tool.
Heat conduction plays an important role in energy transfer at the macro, micro and nano scales. This book collates research results developed by scientists from different countries but with common research interest in the modelling of heat conduction problems. The results reported encompass heat conduction problems related to the Stefan problem, phase change materials related to energy consumption in buildings, the porous media problem with Bingham plastic fluids, thermosolutal convection, rewetting problems and fractional models with singular and non-singular kernels. The variety of analytical and numerical techniques used includes the classical heat-balance integral method in its refined version, double-integration technique and variational formulation applied to the integer-order and fractional models with memories.This book cannot present the entire rich area of problems related to heat conduction, but allows readers to see some new trends and approaches in the modelling technologies. In this context, the fractional models with singular and non-singular kernels and the development of the integration techniques related to the integral-balance approach form fresh fluxes of ideas to this classical engineering area of research.The book is oriented to researchers, masters and PhD students involved in heat conduction problems with a variety of applications and could serve as a rich reference source and a collection of texts provoking new ideas.
The role of thermodynamics in modern physics is not just to provide an approximate treatment of large thermal systems, but, more importantly, to provide an organising set of ideas. Thermodynamics: A complete undergraduate course presents thermodynamics as a self-contained and elegant set of ideas and methods. It unfolds thermodynamics for undergraduate students of physics, chemistry or engineering, beginning at first year level. The book introduces the necessary mathematical methods, assuming almost no prior knowledge, and explains concepts such as entropy and free energy at length, with many examples. This book aims to convey the style and power of thermodynamic reasoning, along with applications such as Joule-Kelvin expansion, the gas turbine, magnetic cooling, solids at high pressure, chemical equilibrium, radiative heat exchange and global warming, to name a few. It mentions but does not pursue statistical mechanics, in order to keep the logic clear.
Kevin E. Trenberth emphasizes the fundamental role of energy flows in the climate system and anthropogenic climate change. The distribution of heat, or more generally, energy, is the main determinant of weather patterns in the atmosphere and their impacts. The topics addressed cover many facets of climate and the climate crisis. These include the diurnal cycle; the seasons; energy differences between the continents and the oceans, the poles and the tropics; interannual variability such as Nino; natural decadal variability; and ice ages. Human-induced climate change rides on and interacts with all of these natural phenomena, and the result is an unevenly warming planet and changing weather extremes. The book emphasizes the need to not only slow or stop climate change, but also to better prepare for it and build resilience. Students, researchers, and professionals from a wide range of backgrounds will benefit from this deeper understanding of climate change.
Heat transfer enhancement has seen rapid development and widespread use in both conventional and emerging technologies. Improvement of heat transfer fluids requires a balance between experimental and numerical work in nanofluids and new refrigerants. Recognizing the uncertainties in development of new heat transfer fluids, Advances in New Heat Transfer Fluids: From Numerical to Experimental Techniques contains both theoretical and practical coverage.
Convective Flow and Heat Transfer from Wavy Surfaces: Viscous Fluids, Porous Media, and Nanofluids addresses the wavy irregular surfaces in heat transfer devices. Fluid flow and heat transfer studies from wavy surfaces have received attention, since they add complexity and require special mathematical techniques. This book considers the flow and heat transfer characteristics from wavy surfaces, providing an understanding of convective behavioral changes.
This book serves as a training tool for individuals in industry and academia involved with heat transfer applications. Although the literature is inundated with texts emphasizing theory and theoretical derivations, the goal of this book is to present the subject of heat transfer from a strictly pragmatic point of view. The book is divided into four Parts: Introduction, Principles, Equipment Design Procedures and Applications, and ABET-related Topics. The first Part provides a series of chapters concerned with introductory topics that are required when solving most engineering problems, including those in heat transfer. The second Part of the book is concerned with heat transfer principles. Topics that receive treatment include Steady-state Heat Conduction, Unsteady-state Heat Conduction, Forced Convection, Free Convection, Radiation, Boiling and Condensation, and Cryogenics. Part three (considered the heart of the book) addresses heat transfer equipment design procedures and applications. In addition to providing a detailed treatment of the various types of heat exchangers, this part also examines the impact of entropy calculations on exchanger design, and operation, maintenance and inspection (OM&I), plus refractory and insulation effects. The concluding Part of the text examines ABET (Accreditation Board for Engineering and Technology) related topics of concern, including economies and finance, numerical methods, open-ended problems, ethics, environmental management, and safety and accident management.
The book provides design engineers an elemental understanding of the variables that influence pressure drop and heat transfer in plain and micro-fin tubes to thermal systems using liquid single-phase flow in different industrial applications. It also provides design engineers using gas-liquid, two-phase flow in different industrial applications the necessary fundamentals of the two-phase flow variables. The author and his colleagues were the first to determine experimentally the very important relationship between inlet geometry and transition. On the basis of their results, they developed practical and easy to use correlations for the isothermal and non-isothermal friction factor (pressure drop) and heat transfer coefficient (Nusselt number) in the transition region as well as the laminar and turbulent flow regions for different inlet configurations and fin geometry. This work presented herein provides the thermal systems design engineer the necessary design tools. The author further presents a succinct review of the flow patterns, void fraction, pressure drop and non-boiling heat transfer phenomenon and recommends some of the well scrutinized modeling techniques.
Design of Thermal Energy Systems Pradip Majumdar, Northern Illinois University, USA A comprehensive introduction to the design and analysis of thermal energy systems Design of Thermal Energy Systems covers the fundamentals and applications in thermal energy systems and components, including conventional power generation and cooling systems, renewable energy systems, heat recovery systems, heat sinks and thermal management. Practical examples are used throughout and are drawn from solar energy systems, fuel cell and battery thermal management, electrical and electronics cooling, engine exhaust heat and emissions, and manufacturing processes. Recent research topics such as steady and unsteady state simulation and optimization methods are also included. Key features: * Provides a comprehensive introduction to the design and analysis of thermal energy systems, covering fundamentals and applications. * Includes a wide range of industrial application problems and worked out example problems. * Applies thermal analysis techniques to generate design specification and ratings. * Demonstrates how to design thermal systems and components to meet engineering specifications. * Considers alternative options and allows for the estimation of cost and feasibility of thermal systems. * Accompanied by a website including software for design and analysis, a solutions manual, and presentation files with PowerPoint slides. The book is essential reading for: practicing engineers in energy and power industries; consulting engineers in mechanical, electrical and chemical engineering; and senior undergraduate and graduate engineering students.
The notion of a lifestyle system leading to zero waste is obviously appealing, and a strategy of total reuse and recycling of: waste material is often advocated. However, there is a growing realization that the recycling process itself produces waste, and the environmental and economic cost of recycling and reusing certain materials invalidates the zero waste approach as a universally viable solution. Thus, solutions must be found to deal with the part of waste that it is not practicable to recycle or reuse. The energy content of municipal waste (whether raw or classified) is about 10MJ kg-1. If the total amount of waste material in any region is around 30 million tons per year or about 1000 kg/ s, the total energy is thus 10,000MJ /s = 10,000 MW. At an electricity generation efficiency of 20%, this could provide 2000 MW plus about 6000MWof district heating. This energy source is largely biomass, which is carbon dioxide neutral, and thus does not contribute to the total atmospheric greenhouse gases. The present work includes many aspects of municipal solid waste combustion, such as the effects of moisture, particle size and ash content effects on solid particle during process rates (moisture evaporation, volatile release, and char burning rate). The COMMENT code has developed to reveal much detailed information on the combustion processes. Through experimental and numerical investigations, the combustion process of simulated MSW in bed can be better understood and the experiment results can be used to amend the mathematics model and be consulted by the application in the project. The results from modeling can show the combustion process, and make us deeply know how the heat transfers in the fuel and gas yields from fuel. At the same time, the simulation can predict the maximum temperature of waste incineration and the trend concerning combustion.
Human adaptation under cold or hot temperatures has always required specific fabrics for clothing. Sports or protective garment companies propose to improve performance or safety. Behind thermal comfort lays many physical/physiological topics: human thermoregulation loop, natural or forced convection, heat and vapor transfer through porous textile layers, solar and infrared radiation effects. This book leads through progressive and pedagogic stages to discern the weight of all the concerned physical parameters.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Cutting-edge heat transfer principles and design applications Apply advanced heat transfer concepts to your chemical, petrochemical, and refining equipment designs using the detailed information contained in this comprehensive volume. Filled with valuable graphs, tables, and charts, Heat Transfer in Process Engineering covers the latest analytical and empirical methods for use with current industry software. Select heat transfer equipment, make better use of design software, calculate heat transfer coefficients, troubleshoot your heat transfer process, and comply with design and construction standards. Heat Transfer in Process Engineering allows you to: Review heat transfer principles with a direct focus on process equipment design Design, rate, and specify shell and tube, plate, and hairpin heat exchangers Design, rate, and specify air coolers with plain or finned tubes Design, rate, and specify different types of condensers with tube or shellside condensation for pure fluids or multicomponent mixtures Understand the principles and correlations of boiling heat transfer, with their limits on and applications to different types of reboiler design Apply correlations for fired heater ratings, for radiant and convective zones, and calculate fuel efficiency Obtain a set of useful Excel worksheets for process heat transfer calculations |
You may like...
Heat Transfer Engineering - Fundamentals…
C. Balaji, Balaji Srinivasan, …
Paperback
R2,850
Discovery Miles 28 500
Materials for Advanced Heat Transfer…
S. J. Vijay, Brusly Solomon, …
Paperback
R5,072
Discovery Miles 50 720
Water (R718) Turbo Compressor and…
Milan N. Sarevski, Vasko N. Sarevski
Paperback
Heat Transfer in the Chemical, Food and…
Jean-Paul Duroudier
Hardcover
Heat Recovery Steam Generator Technology
Vernon L Eriksen
Hardcover
Advances in Heat Transfer, Volume 48
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,970
Discovery Miles 49 700
Heat Transfer and Fluid Flow in…
Satish Kandlikar, Srinivas Garimella, …
Paperback
|