Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Heat transfer processes
Essentials of Radiation Heat Transfer presents the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter.
The long-awaited revision of the bestseller on heat conduction "Heat Conduction, Third Edition "is an update of the classic text on heat conduction, replacing some of the coverage of numerical methods with content on micro- and nanoscale heat transfer. With an emphasis on the mathematics and underlying physics, this new edition has considerable depth and analytical rigor, providing a systematic framework for each solution scheme with attention to boundary conditions and energy conservation. Chapter coverage includes: Heat conduction fundamentalsOrthogonal functions, boundary value problems, and the Fourier SeriesThe separation of variables in the rectangular coordinate systemThe separation of variables in the cylindrical coordinate systemThe separation of variables in the spherical coordinate systemSolution of the heat equation for semi-infinite and infinite domainsThe use of Duhamel's theoremThe use of Green's function for solution of heat conductionThe use of the Laplace transformOne-dimensional composite mediumMoving heat source problemsPhase-change problemsApproximate analytic methodsIntegral-transform techniqueHeat conduction in anisotropic solidsIntroduction to microscale heat conduction In addition, new capstone examples are included in this edition and extensive problems, cases, and examples have been thoroughly updated. A solutions manual is also available. "Heat Conduction" is appropriate reading for students in mainstream courses of conduction heat transfer, students in mechanical engineering, and engineers in research and design functions throughout industry.
During this century, as no other, the two themes of mathematics and heat transfer have become inextricably intertwined, and it was with this underlying sentiment that this volume was conceived. It includes contributions from fifteen countries throughout the world, covering various problems in heat transfer. The contributors work in diverse fields and include mathematicians, theoretical engineers, experimentalists and industrialists.
Since the second edition of Liquid-Vapor Phase-Change Phenomena was written, research has substantially enhanced the understanding of the effects of nanostructured surfaces, effects of microchannel and nanochannel geometries, and effects of extreme wetting on liquid-vapor phase-change processes. To cover advances in these areas, the new third edition includes significant new coverage of microchannels and nanostructures, and numerous other updates. More worked examples and numerous new problems have been added, and a complete solution manual and electronic figures for classroom projection will be available for qualified adopting professors.
A new edition of the bestseller on convection heat transfer A revised edition of the industry classic, "Convection Heat Transfer, Fourth Edition, "chronicles how the field of heat transfer has grown and prospered over the last two decades. This new edition is more accessible, while not sacrificing its thorough treatment of the most up-to-date information on current research and applications in the field. One of the foremost leaders in the field, Adrian Bejan has pioneered and taught many of the methods and practices commonly used in the industry today. He continues this book's long-standing role as an inspiring, optimal study tool by providing: Coverage of how convection affects performance, and how convective flows can be configured so that performance is enhancedHow convective configurations have been evolving, from the flat plates, smooth pipes, and single-dimension fins of the earlier editions to new populations of configurations: tapered ducts, plates with multiscale features, dendritic fins, duct and plate assemblies (packages) for heat transfer density and compactness, etc.New, updated, and enhanced examples and problems that reflect the author's research and advances in the field since the last editionA solutions manual Complete with hundreds of informative and original illustrations, "Convection Heat Transfer, Fourth Edition "is the most comprehensive and approachable text for students in schools of mechanical engineering.
High-Temperature Thermal Storage Systems Using Phase Change Materials offers an overview of several high-temperature phase change material (PCM) thermal storage systems concepts, developed by several well-known global institutions with increasing interest in high temperature PCM applications such as solar cooling, waste heat and concentrated solar power (CSP). The book is uniquely arranged by concepts rather than categories, and includes advanced topics such as thermal storage material packaging, arrangement of flow bed, analysis of flow and heat transfer in the flow bed, energy storage analysis, storage volume sizing and applications in different temperature ranges. By comparing the varying approaches and results of different research centers and offering state-of-the-art concepts, the authors share new and advanced knowledge from researchers all over the world. This reference will be useful for researchers and academia interested in the concepts and applications and different techniques involved in high temperature PCM thermal storage systems.
Combined Heat and Power Generation is a concise, up-to-date and accessible guide to the combined delivery of heat and power to anything, from a single home to a municipal power plant. Breeze discusses the historical background for CHP and why it is set to be a key emission control strategy for the 21st Century. Various technologies such as piston engines, gas turbines and fuel cells are discussed. Economic and environmental factors also are considered and analyzed, making this a very valuable resource for those involved with the research, design, implementation and management of the provision of heat and power.
Advances in Heat Transfer, Volume 49 provides in-depth review articles from a broader scope than in traditional journals or texts. Topics covered in this new volume include Heat Transfer in Rotating Cooling Channel, Flow Boiling and Flow Condensation in Reduced Gravity, Advances in Gas Turbine Cooling, and Advanced Heat Transfer Topics in Complex Duct Flows. While the articles in this series will be of great interest to mechanical, chemical and industrial engineers working in the field of heat transfer, the book is also ideal for those in graduate schools or industry, and even non-specialists interested in the latest research.
Nonlinear Heat Transfer: Mathematical Modeling and Analytical Methods addresses recent progress and original research in nonlinear science and its application in the area of heat transfer, with a particular focus on the most important advances and challenging applications. The importance of understanding analytical methods for solving linear and nonlinear constitutive equations is essential in studying engineering problems. This book provides a comprehensive range of (partial) differential equations, applied in the field of heat transfer, tackling a comprehensive range of nonlinear mathematical problems in heat radiation, heat conduction, heat convection, heat diffusion and non-Newtonian fluid systems. Providing various innovative analytical techniques and their practical application in nonlinear engineering problems is the unique point of this book. Drawing a balance between theory and practice, the different chapters of the book focus not only on the broader linear and nonlinear problems, but also applied examples of practical solutions by the outlined methodologies.
Thermal Energy Storage Analyses and Designs considers the significance of thermal energy storage systems over other systems designed to handle large quantities of energy, comparing storage technologies and emphasizing the importance, advantages, practicalities, and operation of thermal energy storage for large quantities of energy production. Including chapters on thermal storage system configuration, operation, and delivery processes, in particular the flow distribution, flow arrangement, and control for the thermal charge and discharge processes for single or multiple thermal storage containers, the book is a useful reference for engineers who design, install, or maintain storage systems.
Thermal Hydraulics of Water-Cooled Nuclear Reactors reviews flow and heat transfer phenomena in nuclear systems and examines the critical contribution of this analysis to nuclear technology development. With a strong focus on system thermal hydraulics (SYS TH), the book provides a detailed, yet approachable, presentation of current approaches to reactor thermal hydraulic analysis, also considering the importance of this discipline for the design and operation of safe and efficient water-cooled and moderated reactors. Part One presents the background to nuclear thermal hydraulics, starting with a historical perspective, defining key terms, and considering thermal hydraulics requirements in nuclear technology. Part Two addresses the principles of thermodynamics and relevant target phenomena in nuclear systems. Next, the book focuses on nuclear thermal hydraulics modeling, covering the key areas of heat transfer and pressure drops, then moving on to an introduction to SYS TH and computational fluid dynamics codes. The final part of the book reviews the application of thermal hydraulics in nuclear technology, with chapters on V&V and uncertainty in SYS TH codes, the BEPU approach, and applications to new reactor design, plant lifetime extension, and accident analysis. This book is a valuable resource for academics, graduate students, and professionals studying the thermal hydraulic analysis of nuclear power plants and using SYS TH to demonstrate their safety and acceptability.
The role of thermodynamics in modern physics is not just to provide an approximate treatment of large thermal systems, but, more importantly, to provide an organising set of ideas. Thermodynamics: A complete undergraduate course presents thermodynamics as a self-contained and elegant set of ideas and methods. It unfolds thermodynamics for undergraduate students of physics, chemistry or engineering, beginning at first year level. The book introduces the necessary mathematical methods, assuming almost no prior knowledge, and explains concepts such as entropy and free energy at length, with many examples. This book aims to convey the style and power of thermodynamic reasoning, along with applications such as Joule-Kelvin expansion, the gas turbine, magnetic cooling, solids at high pressure, chemical equilibrium, radiative heat exchange and global warming, to name a few. It mentions but does not pursue statistical mechanics, in order to keep the logic clear.
From upstream to downstream, heat exchangers are utilized in
every stage of the petroleum value stream. An integral piece of
equipment, heat exchangers are among the most confusing and
problematic pieces of equipment in petroleum processing operations.
This is especially true for engineers just entering the field or
seasoned engineers that must keep up with the latest methods for
in-shop and in-service inspection, repair, alteration and re-rating
of equipment. The objective of this book is to provide
engineerswith sufficient information to make better logical choices
in designing and operating the system. "Heat Exchanger Equipment
Field Manual" provides an indispensable means for the determination
of possible failures and for the recognition of the optimization
potential of the respective heat exchanger.
Heat Transfer in Aerospace Applications is the first book to provide an overall description of various heat transfer issues of relevance for aerospace applications. The book contains chapters relating to convection cooling, heat pipes, ablation, heat transfer at high velocity, low pressure and microgravity, aircraft heat exchangers, fuel cells, and cryogenic cooling systems. Chapters specific to low density heat transfer (4) and microgravity heat transfer (9) are newer subjects which have not been previously covered. The book takes a basic engineering approach by including correlations and examples that an engineer needs during the initial phases of vehicle design or to quickly analyze and solve a specific problem. Designed for mechanical, chemical, and aerospace engineers in research institutes, companies, and consulting firms, this book is an invaluable resource for the latest on aerospace heat transfer engineering and research.
Thermodynamics includes thirteen independent volumes that define how to perform the selection and calculation of equipment involved in the thirteen basic operations of process engineering, offering reliable and simple methods. Throughout these concise and easy-to-use books, the author uses his vast practical experience and precise knowledge of global research to present an in-depth study of a variety of aspects within the field of chemical engineering. The main concepts of thermodynamics are presented in detail, and their importance is demonstrated through their various practical applications. In this volume, the author provides a general introduction into the study of thermodynamics. Across the five chapters, users will find different concepts involved in the study of energy, including systems, states, energy, laws, and their associated theorems. In addition, the author provides the methods needed for understanding the machinery used in applied thermodynamics to encourage students and engineers to build the programs they need themselves.
1. Enables first year mechanical engineering students to gain a core foundational knowledge in all key areas 2. Provides worked examples of exam-style questions 3. Includes chapters by leading experts experienced in teaching first year students in all disciplines of mechanical engineering 4. Gives a thorough grounding in the following core engineering topics: thermodynamics, fluid mechanics, solid mechanics, dynamics, electricals and electronics, and materials science
The ability to predict the behavior of fermentation systems
enhances the possibility of optimizing their performance.
Mathematical equations of model systems represent a tool for this
and the most recent advances in computer hardware and software have
made the approach more effective than previous simplistic attempts.
The current knowledge of biochemical microbial pathways and the
experience in optimization of chemical reactors combined with
extremely powerful and accessible computers, loaded with easy to
use software and mathematical routines, are changing the way
processes are being developed and operated.
On its original publication in 1973, this book was the first reference for engineers to fully present the science of boiling and condensation. It dealt especially with the problems of estimating heat transfer rates and pressure drops, with particular attention to the occurrence of boiling and condensation in the presence of forced flows within pipes. The new third edition was written primarily for design and development engineers in the chemical process, power generation, and refrigeration industries, and is meant to be an aid in the design of heat exchangers. It covers recent advances and significantly broadens coverage to flows over tube bundles, with extensive new treatment of two-phase heat transfer regarding refrigerants and petrochemicals. Many new problems have been added at the end of each chapter to enhance the book's use as a text in advanced courses on two-phase flow and heat transfer. Instructors using the book as a course text may obtain full solutions to the end-of-chapter problems by writing to: Science Marketing Dept., Oxford University Press, 198 Madison Avenue, New York, NY 10016 (please include school name and course identification), or by faxing (212) 726-6442.
Heat conduction plays an important role in energy transfer at the macro, micro and nano scales. This book collates research results developed by scientists from different countries but with common research interest in the modelling of heat conduction problems. The results reported encompass heat conduction problems related to the Stefan problem, phase change materials related to energy consumption in buildings, the porous media problem with Bingham plastic fluids, thermosolutal convection, rewetting problems and fractional models with singular and non-singular kernels. The variety of analytical and numerical techniques used includes the classical heat-balance integral method in its refined version, double-integration technique and variational formulation applied to the integer-order and fractional models with memories.This book cannot present the entire rich area of problems related to heat conduction, but allows readers to see some new trends and approaches in the modelling technologies. In this context, the fractional models with singular and non-singular kernels and the development of the integration techniques related to the integral-balance approach form fresh fluxes of ideas to this classical engineering area of research.The book is oriented to researchers, masters and PhD students involved in heat conduction problems with a variety of applications and could serve as a rich reference source and a collection of texts provoking new ideas.
Applications of Nanofluid for Heat Transfer Enhancement explores recent progress in computational fluid dynamic and nonlinear science and its applications to nanofluid flow and heat transfer. The opening chapters explain governing equations and then move on to discussions of free and forced convection heat transfers of nanofluids. Next, the effect of nanofluid in the presence of an electric field, magnetic field, and thermal radiation are investigated, with final sections devoted to nanofluid flow in porous media and application of nanofluid for solidification. The models discussed in the book have applications in various fields, including mathematics, physics, information science, biology, medicine, engineering, nanotechnology, and materials science.
The notion of a lifestyle system leading to zero waste is obviously appealing, and a strategy of total reuse and recycling of: waste material is often advocated. However, there is a growing realization that the recycling process itself produces waste, and the environmental and economic cost of recycling and reusing certain materials invalidates the zero waste approach as a universally viable solution. Thus, solutions must be found to deal with the part of waste that it is not practicable to recycle or reuse. The energy content of municipal waste (whether raw or classified) is about 10MJ kg-1. If the total amount of waste material in any region is around 30 million tons per year or about 1000 kg/ s, the total energy is thus 10,000MJ /s = 10,000 MW. At an electricity generation efficiency of 20%, this could provide 2000 MW plus about 6000MWof district heating. This energy source is largely biomass, which is carbon dioxide neutral, and thus does not contribute to the total atmospheric greenhouse gases. The present work includes many aspects of municipal solid waste combustion, such as the effects of moisture, particle size and ash content effects on solid particle during process rates (moisture evaporation, volatile release, and char burning rate). The COMMENT code has developed to reveal much detailed information on the combustion processes. Through experimental and numerical investigations, the combustion process of simulated MSW in bed can be better understood and the experiment results can be used to amend the mathematics model and be consulted by the application in the project. The results from modeling can show the combustion process, and make us deeply know how the heat transfers in the fuel and gas yields from fuel. At the same time, the simulation can predict the maximum temperature of waste incineration and the trend concerning combustion.
Advances in Heat Transfer fills the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles that are from a broader scope than in traditional journals or texts. The articles, which serve as a broad review for experts in the field, are also of great interest to non-specialists who need to keep up-to-date on the results of the latest research. This serial is essential reading for all mechanical, chemical, and industrial engineers working in the field of heat transfer, or in graduate schools or industry.
"Heat Transfer: Lessons with Examples Solved by Matlab instructs students in heat transfer, and cultivates independent and logical thinking ability. The book focuses on fundamental concepts in heat transfer and can be used in courses in Heat Transfer, Heat and Mass Transfer, and Transport Processes. It uses numerical examples and equation solving to clarify complex, abstract concepts such as Kirchhoff's Law in Radiation. Several features characterize this textbook: It includes real-world examples encountered in daily life; Examples are mostly solved in simple Matlab codes, readily for students to run numerical experiments by cutting and pasting Matlab codes into their PCs; In parallel to Matlab codes, some examples are solved at only a few nodes, allowing students to understand the physics qualitatively without running Matlab codes; It places emphasis on ""why"" for engineers, not just ""how"" for technicians. Adopting instructors will receive supplemental exercise problems, as well as access to a companion website where instructors and students can participate in discussion forums amongst themselves and with the author. Heat Transfer is an ideal text for students of mechanical, chemical, and aerospace engineering. It can also be used in programs for civil and electrical engineering, and physics. Rather than simply training students to be technicians, Heat Transfer uses clear examples, structured exercises and application activities that train students to be engineers. The book encourages independent and logical thinking, and gives students the skills needed to master complex, technical subject matter. " " Tien-Mo Shih received his Ph.D. from the University of California, Berkeley, and did his post-doctoral work at Harvard University. From 1978 until his retirement in 2011 he was an Associate Professor of Mechanical Engineering at the University of Maryland, College Park, where he taught courses in thermo-sciences and numerical methods. He remains active in research in these same areas. His book, Numerical Heat Transfer, was translated into Russian and Chinese, and subsequently published by both the Russian Academy of Sciences and the Chinese Academy of Sciences. He has published numerous research papers, and has been invited regularly to write survey papers for Numerical Heat Transfer Journal since 1980s." |
You may like...
Encyclopedia Of Two-phase Heat Transfer…
John R. Thome, Srinivas Garimella, …
Hardcover
R10,961
Discovery Miles 109 610
Encyclopedia Of Two-phase Heat Transfer…
John R. Thome, Jungho Kim
Hardcover
R8,923
Discovery Miles 89 230
Classical and Modern Engineering Methods…
Abram Dorfman
Hardcover
Encyclopedia Of Two-phase Heat Transfer…
John R. Thome, Jungho Kim
Hardcover
R6,664
Discovery Miles 66 640
Encyclopedia Of Two-phase Heat Transfer…
John R. Thome, Jungho Kim
Hardcover
R12,182
Discovery Miles 121 820
|