![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Heat transfer processes
The book provides design engineers an elemental understanding of the variables that influence pressure drop and heat transfer in plain and micro-fin tubes to thermal systems using liquid single-phase flow in different industrial applications. It also provides design engineers using gas-liquid, two-phase flow in different industrial applications the necessary fundamentals of the two-phase flow variables. The author and his colleagues were the first to determine experimentally the very important relationship between inlet geometry and transition. On the basis of their results, they developed practical and easy to use correlations for the isothermal and non-isothermal friction factor (pressure drop) and heat transfer coefficient (Nusselt number) in the transition region as well as the laminar and turbulent flow regions for different inlet configurations and fin geometry. This work presented herein provides the thermal systems design engineer the necessary design tools. The author further presents a succinct review of the flow patterns, void fraction, pressure drop and non-boiling heat transfer phenomenon and recommends some of the well scrutinized modeling techniques.
The single objective of this book is to provide engineers with the capability, tools, and confidence to solve real-world heat transfer problems. It includes many advanced topics, such as Bessel functions, Laplace transforms, separation of variables, Duhamel's theorem, and complex combination, as well as high order explicit and implicit numerical integration algorithms. These analytical and numerical solution methods are applied to topics not considered in most textbooks. Examples are heat exchangers involving fluids with varying specific heats or phase changes; heat exchangers in which axial conduction is a concern; and regenerators. To improve readability, derivations of important results are presented completely, without skipping steps, which reduces student frustration and improves retention. The examples in the book are ubiquitous, not trivial textbook exercises. They are rather complex and timely real-world problems that are inherently interesting. This textbook integrates the computational software packages Maple, MATLAB, FEHT, and Engineering Equation Solver (EES) directly with the heat transfer material.
This book gathers selected papers from the 16th UK Heat Transfer Conference (UKHTC2019), which is organised every two years under the aegis of the UK National Heat Transfer Committee. It is the premier forum in the UK for the local and international heat transfer community to meet, disseminate ongoing work, and discuss the latest advances in the heat transfer field. Given the range of topics discussed, these proceedings offer a valuable asset for engineering researchers and postgraduate students alike.
Analysis of Transport Phenomena, Second Edition, provides a unified treatment of momentum, heat, and mass transfer, emphasizing the concepts and analytical techniques that apply to these transport processes. The second edition has been revised to reinforce the progression from simple to complex topics and to better introduce the applied mathematics that is needed both to understand classical results and to model novel systems. A common set of formulation, simplification, and solution methods is applied first to heat or mass transfer in stationary media and then to fluid mechanics, convective heat or mass transfer, and systems involving various kinds of coupled fluxes.FEATURES: * Explains classical methods and results, preparing students for engineering practice and more advanced study or research * Covers everything from heat and mass transfer in stationary media to fluid mechanics, free convection, and turbulence * Improved organization, including the establishment of a more integrative approach * Emphasizes concepts and analytical techniques that apply to all transport processes * Mathematical techniques are introduced more gradually to provide students with a better foundation for more complicated topics discussed in later chapters NEW TO THIS EDITION: New chapters and sections clarify and expand upon the first edition * Based largely on teaching experience with the first edition, the entire text has been reviewed in detail, and innumerable minor revisions made to improve clarity. * There is a larger set of introductory examples (Chapter 3) * The presentation of similarity and perturbation methods is now a separate chapter (Chapter 4). * The discussion of fluid kinematics and constitutive equations has been reorganized (Chapter 6). * The discussion of simultaneous heat and mass transfer has been expanded (Chapter 14).BL A new appendix section provides a review of essential maths * The solution of ordinary differential equations is reviewed in a new appendix (Appendix B), which also summarizes the properties of commonly encountered special functions. BL New worked examples and end-of-chapter problems * Overall, there are 34 new worked examples in the text and approximately 50 (exact number TBD) new end-of-chapter problems.
This textbook presents a modern treatment of fundamentals of heat and mass transfer in the context of all types of multiphase flows with possibility of phase-changes among solid, liquid and vapor. It serves equally as a textbook for undergraduate senior and graduate students in a wide variety of engineering disciplines including mechanical engineering, chemical engineering, material science and engineering, nuclear engineering, biomedical engineering, and environmental engineering. Multiphase Heat Transfer and Flow can also be used to teach contemporary and novel applications of heat and mass transfer. Concepts are reinforced with numerous examples and end-of-chapter problems. A solutions manual and PowerPoint presentation are available to instructors. While the book is designed for students, it is also very useful for practicing engineers working in technical areas related to both macro- and micro-scale systems that emphasize multiphase, multicomponent, and non-conventional geometries with coupled heat and mass transfer and phase change, with the possibility of full numerical simulation.
The continuing trend toward miniaturization and high power density electronics results in a growing interdependency between different fields of engineering. In particular, thermal management has become essential to the design and manufacturing of most electronic systems. Heat Transfer: Thermal Management of Electronics details how engineers can use intelligent thermal design to prevent heat-related failures, increase the life expectancy of the system, and reduce emitted noise, energy consumption, cost, and time to market. Appropriate thermal management can also create a significant market differentiation, compared to similar systems. Since there are more design flexibilities in the earlier stages of product design, it would be productive to keep the thermal design in mind as early as the concept and feasibility phase. The author first provides the basic knowledge necessary to understand and solve simple electronic cooling problems. He then delves into more detail about heat transfer fundamentals to give the reader a deeper understanding of the physics of heat transfer. Next, he describes experimental and numerical techniques and tools that are used in a typical thermal design process. The book concludes with a chapter on some advanced cooling methods. With its comprehensive coverage of thermal design, this book can help all engineers to develop the necessary expertise in thermal management of electronics and move a step closer to being a multidisciplinary engineer.
The book introduces modern atomistic techniques for predicting heat transfer in nanostructures, and discusses the applications of these techniques on three modern topics. The study of heat transport in screw-dislocated nanowires with low thermal conductivity in their bulk form represents the knowledge base needed for engineering thermal transport in advanced thermoelectric and electronic materials, and suggests a new route to lower thermal conductivity that could promote thermoelectricity. The study of high-temperature coating composite materials facilitates the understanding of the role played by composition and structural characterization, which is difficult to approach via experiments. And the understanding of the impact of deformations, such as bending and collapsing on thermal transport along carbon nanotubes, is important as carbon nanotubes, due to their exceptional thermal and mechanical properties, are excellent material candidates in a variety of applications, including thermal interface materials, thermal switches and composite materials.
Fluid mechanics is a core component of many undergraduate
engineering courses. It is essential for both students and
lecturers to have a comprehensive, highly illustrated textbook,
full of exercises, problems and practical applications to guide
them through their study and teaching. Engineering Fluid Mechanics
By William P. Grabel is that book
This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions - TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.
This new text integrates fundamental theory with modern computational tools such as EES, MATLAB (R), and FEHT to equip students with the essential tools for designing and optimizing real-world systems and the skills needed to become effective practicing engineers. Real engineering problems are illustrated and solved in a clear step-by-step manner. Starting from first principles, derivations are tailored to be accessible to undergraduates by separating the formulation and analysis from the solution and exploration steps to encourage a deep and practical understanding. Numerous exercises are provided for homework and self-study and include standard hand calculations as well as more advanced project-focused problems for the practice and application of computational tools. Appendices include reference tables for thermophysical properties and answers to selected homework problems from the book. Complete with an online package of guidance documents on EES, MATLAB (R), and FEHT software, sample code, lecture slides, video tutorials, and a test bank and full solutions manual for instructors, this is an ideal text for undergraduate heat transfer courses and a useful guide for practicing engineers.
Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What's New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids. The text includes the physical mechanisms of convective heat transfer phenomena, exact or approximate solution methods, and solutions under various conditions, as well as the derivation of the basic equations of convective heat transfer and their solutions. A complete solutions manual and figure slides are also available for adopting professors. Convective Heat Transfer, Third Edition is an ideal reference for advanced research or coursework in heat transfer, and as a textbook for senior/graduate students majoring in mechanical engineering and relevant engineering courses.
Since the second edition of Liquid-Vapor Phase-Change Phenomena was written, research has substantially enhanced the understanding of the effects of nanostructured surfaces, effects of microchannel and nanochannel geometries, and effects of extreme wetting on liquid-vapor phase-change processes. To cover advances in these areas, the new third edition includes significant new coverage of microchannels and nanostructures, and numerous other updates. More worked examples and numerous new problems have been added, and a complete solution manual and electronic figures for classroom projection will be available for qualified adopting professors.
This book presents a new and direct computational method for transient heat transfer. The approach uses the well-known dimensionless Biot number and a second dimensionless number introduced by the author. The methodology allows for a transient heat transfer calculations without using finite difference programs. The book presents many examples and various tables demonstrating the potential of this new methodology. Many diagrams illustrate the physical phenomena.
The CRC Handbook of Thermal Engineering, Second Edition, is a fully updated version of this respected reference work, with chapters written by leading experts. Its first part covers basic concepts, equations and principles of thermodynamics, heat transfer, and fluid dynamics. Following that is detailed coverage of major application areas, such as bioengineering, energy-efficient building systems, traditional and renewable energy sources, food processing, and aerospace heat transfer topics. The latest numerical and computational tools, microscale and nanoscale engineering, and new complex-structured materials are also presented. Designed for easy reference, this new edition is a must-have volume for engineers and researchers around the globe.
Momentum, heat and mass transport phenomena can be found everywhere in nature. A solid understanding of the principles of these processes is essential for chemical and process engineers. The second edition of Transport Phenomena builds on the foundation of the first edition which presented fundamental knowledge and practical application of momentum, heat and mass transfer processes in a form useful to engineers. This revised edition includes revisions of the original text in addition to new applications providing a thoroughly updated edition. This updated text includes;
On its original publication in 1973, this book was the first reference for engineers to fully present the science of boiling and condensation. It dealt especially with the problems of estimating heat transfer rates and pressure drops, with particular attention to the occurrence of boiling and condensation in the presence of forced flows within pipes. The new third edition was written primarily for design and development engineers in the chemical process, power generation, and refrigeration industries, and is meant to be an aid in the design of heat exchangers. It covers recent advances and significantly broadens coverage to flows over tube bundles, with extensive new treatment of two-phase heat transfer regarding refrigerants and petrochemicals. Many new problems have been added at the end of each chapter to enhance the book's use as a text in advanced courses on two-phase flow and heat transfer. Instructors using the book as a course text may obtain full solutions to the end-of-chapter problems by writing to: Science Marketing Dept., Oxford University Press, 198 Madison Avenue, New York, NY 10016 (please include school name and course identification), or by faxing (212) 726-6442.
Thermal management is an issue with all electrical machines, including electric vehicle drives and wind turbine generators. Excessively high temperatures lead to loss of performance, degradation and deformation of components, and ultimately loss of the system. Cooling of Rotating Electrical Machines: Fundamentals, modelling, testing and design provides a foundation of heat transfer and ventilation for the design of machines. It offers a range of practical approaches to the thermal design, as well as design data and case studies. Chapters cover fundamentals of heat transfer, fluid flow, thermal modelling of electrical machines, computational methods for modelling ventilation and heat transfer such as finite element methods and computational fluid dynamics, thermal test methods, and application of design methods. Intended for engineers and researchers working in either academia or machine design companies, this book provides sound insights into the phenomena of heat transfer and fluid flow, giving readers an understanding of how to approach the thermal design of any machine.
In this essential reference, both students and practitioners in the field will find an accessible discussion of electric power generation with gas turbine power plants, using quantitative and qualitative tools. Beginning with a basic discussion of thermodynamics of gas turbine cycles from a second law perspective, the material goes on to cover with depth an analysis of the translation of the cycle to a final product, facilitating quick estimates. In order to provide readers with the knowledge they need to design turbines effectively, there are explanations of simple and combined cycle design considerations, and state-of-the-art, performance prediction and optimization techniques, as well as rules of thumb for design and off-design performance and operational flexibility, and simplified calculations for myriad design and off-design performance. The text also features an introduction to proper material selection, manufacturing techniques, and construction, maintenance, and operation of gas turbine power plants.
Statistical Inference via Data Science: A ModernDive into R and the Tidyverse provides a pathway for learning about statistical inference using data science tools widely used in industry, academia, and government. It introduces the tidyverse suite of R packages, including the ggplot2 package for data visualization, and the dplyr package for data wrangling. After equipping readers with just enough of these data science tools to perform effective exploratory data analyses, the book covers traditional introductory statistics topics like confidence intervals, hypothesis testing, and multiple regression modeling, while focusing on visualization throughout. Features: Assumes minimal prerequisites, notably, no prior calculus nor coding experience Motivates theory using real-world data, including all domestic flights leaving New York City in 2013, the Gapminder project, and the data journalism website, FiveThirtyEight.com Centers on simulation-based approaches to statistical inference rather than mathematical formulas Uses the infer package for "tidy" and transparent statistical inference to construct confidence intervals and conduct hypothesis tests via the bootstrap and permutation methods Provides all code and output embedded directly in the text; also available in the online version at moderndive.com This book is intended for individuals who would like to simultaneously start developing their data science toolbox and start learning about the inferential and modeling tools used in much of modern-day research. The book can be used in methods and data science courses and first courses in statistics, at both the undergraduate and graduate levels.
The long-awaited revision of the bestseller on heat conduction "Heat Conduction, Third Edition "is an update of the classic text on heat conduction, replacing some of the coverage of numerical methods with content on micro- and nanoscale heat transfer. With an emphasis on the mathematics and underlying physics, this new edition has considerable depth and analytical rigor, providing a systematic framework for each solution scheme with attention to boundary conditions and energy conservation. Chapter coverage includes: Heat conduction fundamentalsOrthogonal functions, boundary value problems, and the Fourier SeriesThe separation of variables in the rectangular coordinate systemThe separation of variables in the cylindrical coordinate systemThe separation of variables in the spherical coordinate systemSolution of the heat equation for semi-infinite and infinite domainsThe use of Duhamel's theoremThe use of Green's function for solution of heat conductionThe use of the Laplace transformOne-dimensional composite mediumMoving heat source problemsPhase-change problemsApproximate analytic methodsIntegral-transform techniqueHeat conduction in anisotropic solidsIntroduction to microscale heat conduction In addition, new capstone examples are included in this edition and extensive problems, cases, and examples have been thoroughly updated. A solutions manual is also available. "Heat Conduction" is appropriate reading for students in mainstream courses of conduction heat transfer, students in mechanical engineering, and engineers in research and design functions throughout industry.
This highly recommended book on transport phenomena shows readers how to develop mathematical representations (models) of physical phenomena. The key elements in model development involve assumptions about the physics, the application of basic physical principles, the exploration of the implications of the resulting model, and the evaluation of the degree to which the model mimics reality. This book also expose readers to the wide range of technologies where their skills may be applied.
This edition ensures the legacy of the original 1950 classic, Process Heat Transfer, by Donald Q. Kern that by many is held to be the gold standard. This second edition book is divided into three parts: Fundamental Principles; Heat Exchangers; and Other Heat Transfer Equipment/ Considerations. Part I provides a series of chapters concerned with introductory topics that are required when solving heat transfer problems. This part of the book deals with topics such as steady-state heat conduction, unsteady-state conduction, forced convection, free convection, and radiation. Part II is considered by the authors to be the "meat" of the book, and the primary reason for undertaking this project. Other than minor updates, Part II remains relatively unchanged from the first edition. Notably, it includes Kern's original design methodology for double-pipe, shell-and-tube, and extended surface heat exchangers. Part II also includes boiling and condensation, boilers, cooling towers and quenchers, as well as newly designed open-ended problems. Part III of the book examines other related topics of interest, including refrigeration and cryogenics, batch and unsteady-state processes, health & safety, and the accompanying topic of risk. In addition, this part also examines the impact of entropy calculations on exchanger design. A 36-page Appendix includes 12 tables of properties, layouts and design factors. WHAT IS NEW IN THE 2ND EDITION Changes that are addressed in the 2nd edition so that Kern's original work continues to remain relevant in 21st century process engineering include: Updated Heat Exchanger Design Increased Number of Illustrative Examples Energy Conservation/ Entropy Considerations Environmental Considerations Health & Safety Risk Assessment Refrigeration and Cryogenics
The ideal review for heat transfer course More than 40 million students have trusted Schaum's Outlines for their expert knowledge and helpful solved problems. Written by renowned experts in their respective fields, Schaum's Outlines cover everything from math to science, nursing to language. The main feature for all these books is the solved problems. Step-by-step, authors walk readers through coming up with solutions to exercises in their topic of choice. 269 solved problems and 92 answered problems Outline format supplies a concise guide to the standard college courses in heat transfer Clear, concise explanations of all heat transfer concepts Complements and supplements the major heat transfer textbooks Appropriate for the following courses: Basic Heat Transfer, Engineering Heat Transfer, Introduction to Heat, Transfer, Heat Transfer, Principles of Heat Transfer Easily-understood review of heat transfer Supports all the major textbooks for heat transfer courses
Low-Temperature District Heating Implementation Guidebook. This guidebook was written between 2018 and 2021 by seventeen authors within the IEA DHC/CHP TS2 annex. The input came from 250+ literature references and 165 inspiration initiatives to obtain lower temperatures in buildings and heat distribution networks. The author group wrote 40 internal documents about early implementations of low-temperature district heating. Fifteen of these early implementations are presented in this guidebook. The guidebook contains aggregated information about the main economic drivers for low-temperature district heating, how to obtain lower temperatures in heating systems inside existing and new buildings, and how to obtain lower temperatures in existing and new heat distribution networks. An applied study of a campus system in Darmstadt shows the possibility of reducing temperatures in an existing heat distribution network with rather high temperatures. The competitiveness of low-temperature district heating is explored by analysing business models and heat distribution costs. Early adopters of low-temperature district heating are presented by examples and by identified transition strategies. Five groups of network configurations with fourteen variants are presented to be used for low-temperature district heating. Finally, all 165 identified inspiration initiatives and all 137 locations mentioned are listed.
Applications of Nanofluid for Heat Transfer Enhancement explores recent progress in computational fluid dynamic and nonlinear science and its applications to nanofluid flow and heat transfer. The opening chapters explain governing equations and then move on to discussions of free and forced convection heat transfers of nanofluids. Next, the effect of nanofluid in the presence of an electric field, magnetic field, and thermal radiation are investigated, with final sections devoted to nanofluid flow in porous media and application of nanofluid for solidification. The models discussed in the book have applications in various fields, including mathematics, physics, information science, biology, medicine, engineering, nanotechnology, and materials science. |
You may like...
Wicked Shreveport
Bernadette Jones Palombo, Gary D Joiner, …
Paperback
|