Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Heat transfer processes
"Conjugate Heat and Mass Transfer in Heat MassExchanger Ducts"
bridges the gap between fundamentals and recent discoveries, making
it a valuable tool for anyone looking to expand their knowledge of
heat exchangers. The first book on the market to cover conjugate
heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes
beyond the basics to cover recent advancements in equipment for
energy use and environmental control (such as heat and moisture
recovery ventilators, hollow fiber membrane modules for
humidification/dehumidification, membrane modules for air
purification, desiccant wheels for air dehumidification and energy
recovery, and honeycomb desiccant beds for heat and moisture
control). Explaining the data behind and the applications of
conjugated heat and mass transfer allows for the design, analysis,
and optimization of heat and mass exchangers. Combining this
recently discovered data into one source makes it an invaluable
reference for professionals, academics, and other interested
parties.
Heat transfer laws for conduction, radiation and convection change when the dimensions of the systems in question shrink. The altered behaviours can be used efficiently in energy conversion, respectively bio- and high-performance materials to control microelectronic devices. To understand and model those thermal mechanisms, specific metrologies have to be established. This book provides an overview of actual devices and materials involving micro-nanoscale heat transfer mechanisms. These are clearly explained and exemplified by a large spectrum of relevant physical models, while the most advanced nanoscale thermal metrologies are presented.
Written by a leading expert in LED packaging technologies, this book systematically introduces fundamental theory and practical design approaches to IC/LED product design. Readers get a good grounding in thermal management strategies with topics such as heat transfer fundamentals, thermal modeling, and thermal simulation and design. Additionally, cooling technologies and testing techniques are provided to help readers evaluate device performance and to shorten the design and manufacturing cycle.
"Phase Change Materials: Science and Applications" provides a unique introduction of this rapidly developing field. Clearly written and well-structured, this volume describes the material science of these fascinating materials from a theoretical and experimental perspective. Readers will find an in-depth description of their existing and potential applications in optical and solid state storage devices as well as reconfigurable logic applications. Researchers, graduate students and scientists with an interest in this field will find "Phase Change Materials" to be a valuable reference.
The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author's experience indicates that students, after 40 lectures and exercisesof 45 minutesbasedon this textbook, have proved capable of designing independently complex heat exchangers such as for cooling of rocket propulsion chambers, condensers and evaporators for heat pumps."
Heat and Mass Transfer in Drying of Porous Media offers a comprehensive review of heat and mass transfer phenomena and mechanisms in drying of porous materials. It covers pore-scale and macro-scale models, includes various drying technologies, and discusses the drying dynamics of fibrous porous material, colloidal porous media and size-distributed particle system. Providing guidelines for mathematical modeling and design as well as optimization of drying of porous material, this reference offers useful information for researchers and students as well as engineers in drying technology, food processes, applied energy, mechanical, and chemical engineering.
Written for an advanced undergraduate or first-year graduate course, Intermediate Heat Transfer starts with the basics, and puts emphasis on formulating problems, obtaining solutions, and analyzing results using analytical, and numerical methods with the aid of spreadsheets and CFD software. The text employs nondimensionalization as a tool for simplifying the governing equations, developing additional insights into the physics of the problems, identifying the relevant parameters, and arriving at general solutions. It provides comprehensive coverage of the topics and develops the skills for solving heat transfer problems using numerical methods with the aid of spreadsheets and computational fluid mechanics software. Presents coverage of convective, conductive, and radiative heat transfer at the graduate level Provides a balance of analytical and numerical approaches to advanced heat transfer Stresses nondimensionalization throughout the book as a tool for simplifying the governing equations The author presents detailed numerical solutions to many advanced problems using spreadsheets, although the methods presented for obtaining solutions can be can also be implemented using equation solvers and computing environments, or direct programming using languages such as Fortran or C. The text contains a chapter on CFD to provide the necessary background for obtaining and analyzing CFD solutions. It includes a number of step-by-step tutorials for solving more complicated problems using Fluent, both to show how CFD codes are used as well as a further check of some of the more commonly used assumptions. The text also has extensive coverage of heat exchangers, including being the first text to cover the heat exchanger efficiency for the design and analysis of heat exchangers. This approach eliminates the need for complicated charts or equations. The chapter on mass tr
A unique approach to the study of geothermal energy systems This book takes a unique, holistic approach to the interdisciplinary study of geothermal energy systems, combining low, medium, and high temperature applications into a logical order. The emphasis is on the concept that all geothermal projects contain common elements of a "thermal energy reservoir" that must be properly designed and managed. The book is organized into four sections that examine geothermal systems: energy utilization from resource and site characterization; energy harnessing; energy conversion (heat pumps, direct uses, and heat engines); and energy distribution and uses. Examples are provided to highlight fundamental concepts, in addition to more complex system design and simulation. Key features: * Companion website containing software tools for application of fundamental principles and solutions to real-world problems. * Balance of theory, fundamental principles, and practical application. * Interdisciplinary treatment of the subject matter. Geothermal Heat Pump & Heat Engine Systems: Theory and Practice is a unique textbook for Energy Engineering and Mechanical Engineering students as well as practicing engineers who are involved with low-enthalpy geothermal energy systems.
This book addresses smoke management in enclosures and provides a platform for understanding the principles of smoke propagation and spread, heat release rate, and the effect of sprinklers on suppression. Considering how sprinkler systems have become a vital part of firefighting systems in enclosures, the book evaluates the effect of sprinkler activation on the behavior of fire-induced smoke and the interaction of water particles with the smoke layer. It studies two base case models where the sprinklers' effect on the fire curve was considered. This base case was assessed with two smoke extraction systems, namely, a ducted system and an impulse ventilation system. By focusing on key elements, such as visibility, ceiling height, and fire curve, the results of the study will be of interest to mechanical engineers, HVAC professionals, and fire safety professionals and investigators. Features Includes case models and scenarios to evaluate real examples from different applications Studies the effect of sprinkler activation on the behavior of fire-induced smoke Explores various factors, such as ceiling height, sprinkler operating pressure, and fire curve Discusses the interaction of water particles with the smoke layer Utilizes Pyrosim software for CFD modeling
Heat Conduction, Fifth Edition, upholds its reputation as the leading text in the field for graduate students, and as a resource for practicing engineers. The text begins with fundamental concepts, introducing the governing equation of heat conduction, and progresses through solutions for one-dimensional conduction, orthogonal functions, Fourier series and transforms, and multi-dimensional problems. Integral equations, Laplace transforms, finite difference numerical methods, and variational formulations are then covered. A systematic derivation of the analytical solution of heat conduction problems in heterogeneous media, introducing a more general approach based on the integral transform method, has been added in this new edition, along with new and revised problems, and complete problem solutions for instructors.
The second edition of this reliable text provides readers with a thorough understanding of the design procedures that are essential in designing new buildings and building refurbishment. Covering the fundamentals of heat and mass transfer as essential underpinning knowledge, this edition has been thoroughly updated and reflects the need for new building design and building refurbishment to feature low energy consumption and sustainable characteristics. New additions include:
This book is an invaluable guide for HND and degree level students of building services engineering, as well as building, built environment, building engineering and architecture courses.
This practical book provides instruction on how to conduct several "hands-on" experiments for laboratory demonstration in the teaching of heat transfer and fluid dynamics. It is an ideal resource for chemical engineering, mechanical engineering, and engineering technology professors and instructors starting a new laboratory or in need of cost-effective and easy to replicate demonstrations. The book details the equipment required to perform each experiment (much of which is made up of materials readily available is most laboratories), along with the required experimental protocol and safety precautions. Background theory is presented for each experiment, as well as sample data collected by students, and a complete analysis and treatment of the data using correlations from the literature.
Nanofluids are solid-liquid composite material consisting of solid nanoparticles suspended in liquid with enhanced thermal properties. This book introduces basic fluid mechanics, conduction and convection in fluids, along with nanomaterials for nanofluids, property characterization, and outline applications of nanofluids in solar technology, machining and other special applications. Recent experiments on nanofluids have indicated significant increase in thermal conductivity compared with liquids without nanoparticles or larger particles, strong temperature dependence of thermal conductivity, and significant increase in critical heat flux in boiling heat transfer, all of which are covered in the book. Key Features Exclusive title focusing on niche engineering applications of nanofluids Contains high technical content especially in the areas of magnetic nanofluids and dilute oxide based nanofluids Feature examples from research applications such as solar technology and heat pipes Addresses heat transfer and thermodynamic features such as efficiency and work with mathematical rigor Focused in content with precise technical definitions and treatment
Thermal convection is often encountered by scientists and engineers while designing or analyzing flows involving exchange of energy. Fundamentals of Convective Heat Transfer is a unified text that captures the physical insight into convective heat transfer and thorough, analytical, and numerical treatments. It also focuses on the latest developments in the theory of convective energy and mass transport. Aimed at graduates, senior undergraduates, and engineers involved in research and development activities, the book provides new material on boiling, including nuances of physical processes. In all the derivations, step-by-step and systematic approaches have been followed.
Human thermal comfort, namely in the areas of heating, ventilation and air conditioning (collectively known as 'HVAC'), is ubiquitous wherever human habitation may be found. Today, a large portion of the developed world's current energy demands are used to artificially keep the temperatures of our environments comfortable. It is therefore imperative for everyone, decision-makers and engineers alike, involved with the future of energy to be appropriately acquainted with HVAC.Lecture Notes on Engineering Human Thermal Comfort explains the quintessence of engineering human thermal comfort through straight-forward writing designed to help students better comprehend the materials presented. Illustrative figures, anecdotal banter, and ironical analogies interject the necessary technical humdrum to provide timeous stimuli in the midst of arduous technical details.This book is primarily for senior undergraduate engineering students interested in engineering human thermal comfort. It invokes some undergraduate knowledge of thermodynamics, heat transfer, and fluid mechanics as needed, to enable students to appreciate thermal comfort engineering without the need to seek out other textbooks.
Currently much research is being undertaken, within a wide range of scientific and engineering disciplines, on macroscopic phenomena associated with liquid boundaries. This volume contains articles which address the modelling of such phenomena from a variety of viewpoints. These works serve to acquaint the reader with the range of macroscopic behaviour which can occur at liquid boundaries, to indicate various aproaches to relevant continuum descriptions and the difficulties of modelling non-equilibrium situations, to demonstrate applications of continuum models to the solution of practical problems, and to convey due appreciation of experimental aspects of the subject. The specific topics addressed are phenomenological approaches to fluid-flute interfaces and the physical interpretation of associated concepts and quantities, non-equilibrium thermodynamics and statistical physics of liquid-vapour interfaces, the physics of ice-water phase-change surfaces, and the prediction of static and dynamic contact angles, wetting and spreading.
This is a text/reference illustrating thermal and hydraulic design of heat exchangers. The book shows how to apply the fundamentals of thermodynamics, heat transfer, and fluid dynamics for a systematic analysis of the phenomena in heat exchangers, important to energy effective operation in process plants.
Presents a systematic approach to heat exchangers, focusing on fundamentals and applications Provides realistic design examples to enable instructors to assign thermal design projects to students Adds new or updated coverage of gasketed, compact and microscale heat exchangers Covers both single-phase and two-phase forced convection correlations Includes Figure Slides and a complete Solutions Manual for instructor adopting the text
Computational fluid flow is not an easy subject. Not only is the mathematical representation of physico-chemical hydrodynamics complex, but the accurate numerical solution of the resulting equations has challenged many numerate scientists and engineers over the past two decades. The modelling of physical phenomena and testing of new numerical schemes has been aided in the last 10 years or so by a number of basic fluid flow programs (MAC, TEACH, 2-E-FIX, GENMIX, etc). However, in 1981 a program (perhaps more precisely, a software product) called PHOENICS was released that was then (and still remains) arguably, the most powerful computational tool in the whole area of endeavour surrounding fluid dynamics. The aim of PHOENICS is to provide a framework for the modelling of complex processes involving fluid flow, heat transfer and chemical reactions. PHOENICS has now been is use for four years by a wide range of users across the world. It was thus perceived as useful to provide a forum for PHOENICS users to share their experiences in trying to address a wide range of problems. So it was that the First International PHOENICS Users Conference was conceived and planned for September 1985. The location, at the Dartford Campus of Thames Polytechnic, in the event, proved to be an ideal site, encouraging substantial interaction between the participants.
A complete overview and considerations in process equipment design Handling and storage of large quantities of materials is crucial to the chemical engineering of a wide variety of products. Process Equipment Design explores in great detail the design and construction of the containers - or vessels - required to perform any given task within this field. The book provides an introduction to the factors that influence the design of vessels and the various types of vessels, which are typically classified according to their geometry. The text then delves into design and other considerations for the construction of each type of vessel, providing in the process a complete overview of process equipment design.
Human adaptation under cold or hot temperatures has always required specific fabrics for clothing. Sports or protective garment companies propose to improve performance or safety. Behind thermal comfort lays many physical/physiological topics: human thermoregulation loop, natural or forced convection, heat and vapor transfer through porous textile layers, solar and infrared radiation effects. This book leads through progressive and pedagogic stages to discern the weight of all the concerned physical parameters.
Providing a comprehensive analysis of the dynamic complexities of environmental systems—both natural and manmade—Process Dynamics in Environmental Systems is a unique, practical introduction to the issues and design mandates central to environmental engineering. An outgrowth of the classic text Physicochemical Processes for Water Quality Control, this new book amplifies and updates the important discussion of process dynamics begun in the original. Designed as a stand-alone reference to every aspect of process dynamics, the current book offers a complete theoretical analysis of the subject as well as numerous practical illustrations of how process models are useful in interpreting and designing a wide variety of process operations. Beginning with a broad overview of the factors and features of environmental systems and processes, the book then clearly details the general nature of fundamental processes, the character of the different types of systems in which they occur, and the way in which these factors influence process dynamics and environmental systems. The book then examines the core elements of process analysis—energetics, reaction rates, and reactor dynamics—and shows how process modeling integrates these elements in quantitative descriptions and in designs of engineered systems. Central to the structure of this book is a detailed analysis of the nature of reaction and transport phenomena—the two fundamental aspects of any environmental system. Including a look at reactions on both a macroscopic and microscopic scale, the book examines the mechanics of macroscopic and microscopic transport processes, outlining mass transport concepts basic to an understanding of reaction phenomena and reactor engineering. Subsequent chapters examine environmental reaction phenomena in the context of chemical species and transformations, including a discussion of energy balances and flows in both single-phase and multi-phase systems. A detailed look at the molecular basis for reaction kinetics in both single-phase and multi-phase systems follows. The book then broadens its focus to reactor dynamics, outlining engineering design considerations associated with reactor systems involving one phase; and then reactor systems involving transformations among and between components in two or more phases. A particularly unique feature of the book is its coverage of process dynamics for reactor systems in which transient conditions occur, at both the macroscopic and microscopic scales. A synthesis of the various aspects of process dynamics forms the book's conclusion, enabling the reader to skillfully apply the concepts of process dynamics to the interpretation and design of environmental systems. An ideal reference/handbook to the theory and uses of process dynamics, the book's practical, instructive format includes detailed example problems, assigned problems with answers, as well as suggested supplementary reading. Useful general appendices are provided, and many individual chapters also feature appendices which address issues specific to the chapter. Featuring a practical, forward looking approach to environmental systems design, Process Dynamics in Environmental Systems is a must for professionals and students interested in building the structures that preserve—and elevate—our quality of life. A blueprint to understanding and designing environmental systems...an authoritative text and handbook for the '90s and beyond Process dynamics is the science of quantifying and predicting the various components and phenomena underlying environmental systems. Designed as a comprehensive teaching text, reference, and study guide, Process Dynamics in Environmental Systems offers a complete theoretical analysis of process dynamics as well as numerous practical illustrations of how process models are useful in interpreting and designing a wide variety of process operations. Beginning with a broad overview of the factors and features of environmental systems and processes, the book then clearly details the general nature of fundamental processes, the character of the different types of systems in which they occur, and the way in which these factors influence process dynamics and environmental systems. The book then examines:
The book's practical, instructive format includes detailed example problems, assigned problems with answers, as well as suggested supplementary reading.
Heat and Mass Transfer in Drying of Porous Media offers a comprehensive review of heat and mass transfer phenomena and mechanisms in drying of porous materials. It covers pore-scale and macro-scale models, includes various drying technologies, and discusses the drying dynamics of fibrous porous material, colloidal porous media and size-distributed particle system. Providing guidelines for mathematical modeling and design as well as optimization of drying of porous material, this reference offers useful information for researchers and students as well as engineers in drying technology, food processes, applied energy, mechanical, and chemical engineering.
Written for an advanced undergraduate or first-year graduate course, Intermediate Heat Transfer starts with the basics, and puts emphasis on formulating problems, obtaining solutions, and analyzing results using analytical, and numerical methods with the aid of spreadsheets and CFD software. The text employs nondimensionalization as a tool for simplifying the governing equations, developing additional insights into the physics of the problems, identifying the relevant parameters, and arriving at general solutions. It provides comprehensive coverage of the topics and develops the skills for solving heat transfer problems using numerical methods with the aid of spreadsheets and computational fluid mechanics software.
The author presents detailed numerical solutions to many advanced problems using spreadsheets, although the methods presented for obtaining solutions can be can also be implemented using equation solvers and computing environments, or direct programming using languages such as Fortran or C. The text contains a chapter on CFD to provide the necessary background for obtaining and analyzing CFD solutions. It includes a number of step-by-step tutorials for solving more complicated problems using Fluent, both to show how CFD codes are used as well as a further check of some of the more commonly used assumptions. The text also has extensive coverage of heat exchangers, including being the first text to cover the heat exchanger efficiency for the design and analysis of heat exchangers. This approach eliminates the need for complicated charts or equations. The chapter on mass transfer and chemically reactive flows provides the background needed for modeling of combustion problems. This book fills the gap between the undergraduate heat transfer course and specialized advanced courses like conduction, convection, radiation, and mass transfer. Much has changed in the field of heat transfer, in what is taught, and how it is presented. An important change has been a shift away from advanced analytical techniques, to more reliance on numerical solutions, which also broadens the topics that are covered in these courses. |
You may like...
Advances in Heat Transfer, Volume 24
James P. Hartnett, Thomas F. Irvine, …
Hardcover
R1,700
Discovery Miles 17 000
Ejectors for Efficient Refrigeration…
Giuseppe Grazzini, Adriano Milazzo, …
Hardcover
R3,906
Discovery Miles 39 060
Classical and Modern Engineering Methods…
Abram Dorfman
Hardcover
Encyclopedia Of Two-phase Heat Transfer…
John R. Thome, Jungho Kim
Hardcover
R6,664
Discovery Miles 66 640
|