Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Materials science
This book comprises a collection of chapters on advances in green nanomaterials. The book looks at ways to establish long-term safe and sustainable forms of nanotechnology through implementation of nanoparticle biosynthesis with minimum impact on the ecosystem. The book looks at synthesis, processing, and applications of metal and metal oxide nanomaterials and also at bio-nanomaterials. The contents of this book will prove useful for researchers and professionals working in the field of nanomaterials and green technology.
This book gathers the peer-reviewed contributions presented at two parallel, closely interconnected events on advanced construction materials and processes, namely the 2nd International RILEM Conference on Rheology and Processing of Construction Materials (RheoCon2) and the 9th International RILEM Symposium on Self-Compacting Concrete (SCC9), held in Dresden, Germany on 8-11 September 2019. The papers discuss various aspects of research on the development, testing, and applications of cement-based and other building materials together with their specific rheological properties. Furthermore, the papers cover the latest findings in the fast-growing field of self-compacting concrete, addressing topics including components' properties and characterization; chemical admixtures, effect of binders (incl. geopolymers, calcined clay, etc.) and mixture design; laboratory and in-situ rheological testing; constitutive models and flow modelling; numerical simulations; mixing, processing and casting processes; and additive manufacturing / 3D-printing. Also presenting case studies, the book is of interest to researchers, graduate students, and industry specialists, such as material suppliers, consultants and construction experts.
This book provides a comprehensive introduction to the kinetic theory for describing flow problems from molecular scale, hydrodynamic scale, to Darcy scale. The author presents various numerical algorithms to solve the same Boltzmann-like equation for different applications of different scales, in which the dominant transport mechanisms may differ. This book presents a concise introduction to the Boltzmann equation of the kinetic theory, based on which different simulation methods that were independently developed for solving problems of different fields can be naturally related to each other. Then, the advantages and disadvantages of different methods will be discussed with reference to each other. It mainly covers four advanced simulation methods based on the Boltzmann equation (i.e., direct simulation Monte Carlo method, direct simulation BGK method, discrete velocity method, and lattice Boltzmann method) and their applications with detailed results. In particular, many simulations are included to demonstrate the applications for both conventional and unconventional reservoirs. With the development of high-resolution CT and high-performance computing facilities, the study of digital rock physics is becoming increasingly important for understanding the mechanisms of enhanced oil and gas recovery. The advanced methods presented here have broad applications in petroleum engineering as well as mechanical engineering , making them of interest to researchers, professionals, and graduate students alike. At the same time, instructors can use the codes at the end of the book to help their students implement the advanced technology in solving real industrial problems.
This volume contains selected papers from the Second Quadrennial International Conference on Structural Integrity (ICONS-2018). The papers cover important topics related to structural integrity of critical installations, such as power plants, aircrafts, spacecrafts, defense and civilian components. The focus is on assuring safety of operations with high levels of reliability and structural integrity. This volume will be of interest to plant operators working with safety critical equipment, engineering solution providers, software professionals working on engineering analysis, as well as academics working in the area.
In Advanced ULSI interconnects - fundamentals and applications we bring a comprehensive description of copper-based interconnect technology for ultra-lar- scale integration (ULSI) technology for integrated circuit (IC) application. In- grated circuit technology is the base for all modern electronics systems. You can ?nd electronics systems today everywhere: from toys and home appliances to a- planes and space shuttles. Electronics systems form the hardware that together with software are the bases of the modern information society. The rapid growth and vast exploitation of modern electronics system create a strong demand for new and improved electronic circuits as demonstrated by the amazing progress in the ?eld of ULSI technology. This progress is well described by the famous "Moore's law" which states, in its most general form, that all the metrics that describe integrated circuit performance (e. g. , speed, number of devices, chip area) improve expon- tially as a function of time. For example, the number of components per chip d- bles every 18 months and the critical dimension on a chip has shrunk by 50% every 2 years on average in the last 30 years. This rapid growth in integrated circuits te- nology results in highly complex integrated circuits with an increasing number of interconnects on chips and between the chip and its package. The complexity of the interconnect network on chips involves an increasing number of metal lines per interconnect level, more interconnect levels, and at the same time a reduction in the interconnect line critical dimensions.
This book is intended to provide a course of infrared spectroscopy for quantitative analysis, covering both bulk matter and surface/interface analyses. Although the technology of Fourier transform infrared (FT-IR) spectroscopy was established many years ago, the full potential of infrared spectroscopy has not been properly recognized, and its intrinsic potential is still put aside. FT-IR has outstandingly useful characteristics, however, represented by the high sensitivity for monolayer analysis, highly reliable quantitativity, and reproducibility, which are quite suitable for surface and interface analysis. Because infrared spectroscopy provides rich chemical information-for example, hydrogen bonding, molecular conformation, orientation, aggregation, and crystallinity-FT-IR should be the first choice of chemical analysis in a laboratory. In this book, various analytical techniques and basic knowledge of infrared spectroscopy are described in a uniform manner. In particular, techniques for quantitative understanding are particularly focused for the reader's convenience.
The book presents a state-of-the-art overview of current developments in the field in a way accessible to attendees coming from a variety of fields. Relevant examples are turbulence research, (environmental) fluid mechanics, lake hydrodynamics and atmospheric physics. Topics discussed range from the fundamentals of rotating and stratified flows, mixing and transport in stratified or rotating turbulence, transport in the atmospheric boundary layer, the dynamics of gravity and turbidity currents eventually with effects of background rotation or stratification, mixing in (stratified) lakes, and the Lagrangian approach in the analysis of transport processes in geophysical and environmental flows. The topics are discussed from fundamental, experimental and numerical points of view. Some contributions cover fundamental aspects including a number of the basic dynamical properties of rotating and or stratified (turbulent) flows, the mathematical description of these flows, some applications in the natural environment, and the Lagrangian statistical analysis of turbulent transport processes and turbulent transport of material particles (including, for example, inertial and finite-size effects). Four papers are dedicated to specific topics such as transport in (stratified) lakes, transport and mixing in the atmospheric boundary layer, mixing in stratified fluids and dynamics of turbidity currents. The book is addressed to doctoral students and postdoctoral researchers, but also to academic and industrial researchers and practicing engineers, with a background in mechanical engineering, applied physics, civil engineering, applied mathematics, meteorology, physical oceanography or physical limnology.
This book describes how, given the global challenge of a shortage of natural resources in the 21st century, the recycling of waste concrete is one of the most important means of implementing sustainable construction development strategies. Firstly, the book presents key findings on the micro- and meso-structure of recycled aggregate concrete (RAC), while the second part focuses on the mechanical properties of RAC: the strength, elastic modulus, Poisson's ratio, stress-strain curve, etc. The third part of the book explores research on the durability of RAC: carbonization, chloride penetration, shrinkage and creep. It then presents key information on the mechanical behavior and seismic performance of RAC elements and structures: beams, columns, slabs, beam-column joints, and frames. Lastly, the book puts forward design guidelines for recycled aggregate concrete structures. Taken as a whole, the research results - based on a series of investigations the author has condu cted on the mechanical properties, durability and structural performance of recycled aggregate concrete (RAC) over the past 10 years - demonstrate that, with proper design and construction, it is safe and feasible to utilize RAC structures in civil engineering applications. The book will greatly benefit researchers, postgraduates, and engineers in civil engineering with an interest in this field.
This book presents current laboratory, scientific and clinical aspects of nanomaterials used for medical applications in the fields of regenerative medicine, dentistry and pharmacy. It gives a broad overview of the in vitro compatibility assessment of nanostructured materials implemented in the medical field by the combination of classical biological protocols. The chapters cover all aspects of integrative medicine, such as green derived nanomaterials for biological applications; synthetic and nature-derived lipid nanoparticles and polymer nanoparticles.
This book provides an overview of eco-friendly resins and their composite materials covering their synthesis, sources, structures and properties for different industrial applications to support the ongoing research and development in eco-friendly and renewable commercial products. It provides comparative discussions on the properties of eco-friendly resins with other polymer composites. It is a useful reference on bio-based eco-friendly polymer resins, wood-based composites, natural fibers and biomass materials for the polymer scientists, engineers and material scientists.
This book treats dynamic stability of structures under nonconservative forces. it is not a mathematics-based, but rather a dynamics-phenomena-oriented monograph, written with a full experimental background. Starting with fundamentals on stability of columns under nonconservative forces, it then deals with the divergence of Euler's column under a dead (conservative) loading from a view point of dynamic stability. Three experiments with cantilevered columns under a rocket-based follower force are described to present the verifiability of nonconservative problems of structural stability. Dynamic stability of columns under pulsating forces is discussed through analog experiments, and by analytical and experimental procedures together with related theories. Throughout the volume the authors retain a good balance between theory and experiments on dynamic stability of columns under nonconservative loading, offering a new window to dynamic stability of structures, promoting student- and scientist-friendly experiments.
This book offers a snapshot of recent developments in improving the properties and performance of engineering materials and structures. It discusses modeling properties related to classical mechanical, thermal, electrical and optical fields as well as those related to surface-specific quantities (e.g. roughness, wear and modifications due to surface coatings). The material types presented range from classical metals and synthetic materials to composites. Competitiveness due to cost efficiency (e.g. lighter structures and the corresponding fuel savings for transportation systems) and sustainability (e.g. recyclability or reusability) are the driving factors for engineering developments. The outcomes of these efforts are difficult to be accurately monitored due to the ongoing evaluation cycles.
This multi-contributed volume provides a practical, applications-focused introduction to nonlinear acoustical techniques for nondestructive evaluation. Compared to linear techniques, nonlinear acoustical/ultrasonic techniques are much more sensitive to micro-cracks and other types of small distributed damages. Most materials and structures exhibit nonlinear behavior due to the formation of dislocation and micro-cracks from fatigue or other types of repetitive loadings well before detectable macro-cracks are formed. Nondestructive evaluation (NDE) tools that have been developed based on nonlinear acoustical techniques are capable of providing early warnings about the possibility of structural failure before detectable macro-cracks are formed. This book presents the full range of nonlinear acoustical techniques used today for NDE. The expert chapters cover both theoretical and experimental aspects, but always with an eye towards applications. Unlike other titles currently available, which treat nonlinearity as a physics problem and focus on different analytical derivations, the present volume emphasizes NDE applications over detailed analytical derivations. The introductory chapter presents the fundamentals in a manner accessible to anyone with an undergraduate degree in Engineering or Physics and equips the reader with all of the necessary background to understand the remaining chapters. This self-contained volume will be a valuable reference to graduate students through practising researchers in Engineering, Materials Science, and Physics. Represents the first book on nonlinear acoustical techniques for NDE applications Emphasizes applications of nonlinear acoustical techniques Presents the fundamental physics and mathematics behind nonlinear acoustical phenomenon in a simple, easily understood manner Covers a variety of popular NDE techniques based on nonlinear acoustics in a single volume
This book explores key parameters, properties and fundamental concepts of electrocatalysis. It also discusses the engineering strategies, current applications in fuel-cells, water-splitting, metal-ion batteries, and fuel generation. This book elucidates entire category viewpoints together with industrial applications. Therefore, all the sections of this book emphasize the recent advances of different types of electrocatalysts, current challenges, and state-of-the-art studies through detailed reviews. This book is the result of commitments by numerous experts in the field from various backgrounds and expertise and appeals to industrialists, researchers, scientists and in addition understudies from various teaches.
This collection gives broad and up-to-date results in the research and development of materials characterization and processing. Coverage is well-rounded from minerals, metals, and materials characterization and developments in extraction to the fabrication and performance of materials. In addition, topics as varied as structural steels to electronic materials to plant-based composites are explored. The latest research presented in this wide area make this book both timely and relevant to the materials science field as a whole. The book explores scientific processes to characterize materials using modern technologies, and focuses on the interrelationships and interdependence among processing, structure, properties, and performance of materials. Topics covered include ferrous materials, non-ferrous materials, minerals, ceramics, clays, soft materials, method development, processing, corrosion, welding, solidification, composites, extraction, powders, nanomaterials, advanced materials, and several others.
This book presents the topology optimization theory for laminar flows with low and moderate Reynolds numbers, based on the density method and level-set method, respectively. The density-method-based theory offers efficient convergence, while the level-set-method-based theory can provide anaccurate mathematical expression of the structural boundary. Unsteady, body-force-driven and two-phase properties are basic characteristics of the laminar flows. The book discusses these properties, which are typical of microfluidics and one of the research hotspots in the area of Micro-Electro-Mechanical Systems (MEMS), providing an efficient inverse design approach for microfluidic structures. To demonstrate the applications of this topology optimization theory in the context of microfluidics, it also investigates inverse design for the micromixer, microvalve and micropump, which are key elements in lab-on-chip devices.
In this book the authors show that it is possible to construct efficient computationally oriented models of multi-parameter complex systems by using asymptotic methods, which can, owing to their simplicity, be directly used for controlling processes arising in connection with composite material systems. The book focuses on this asymptotic-modeling-based approach because it allows us to define the most important out of numerous parameters describing the system, or, in other words, the asymptotic methods allow us to estimate the sensitivity of the system parameters. Further, the book addresses the construction of nonlocal and higher-order homogenized models. Local fields on the micro-level and the influence of so-called non-ideal contact between the matrix and inclusions are modeled and investigated. The book then studies composites with non-regular structure and cluster type composite conductivity, and analyzes edge effects in fiber composite materials. Transition of load from a fiber to a matrix for elastic and viscoelastic composites, various types of fiber composite fractures, and buckling of fibers in fiber-reinforced composites is also investigated. Last but not least, the book includes studies on perforated membranes, plates, and shells, as well as the asymptotic modeling of imperfect nonlinear interfaces.
This book summarizes the main advances in the mechanisms of combustion processes. It focuses on the analysis of kinetic mechanisms of gas combustion processes and experimental investigation into the interrelation of kinetics and gas dynamics in gas combustion. The book is complimentary to the one previously published, The Modes of Gaseous Combustion.
This book describes the development of three dimensional electroactive fibres using a novel coaxial wet-spinning approach from organic conductors in combination with non-conducting hydrogel polymers. This book also presents the characterization and evaluation of multiaxial biofibres in terms of mechanical, physical, electrochemical and biological properties, and explores their use in a diverse range of applications including implantable electrodes, drug delivery systems and energy-storage systems. In the first chapter, the author highlights the significance of engineering three dimensional fibres, introduces the involved hydrogels and organic conductors with emphasis on their biomedical application, and collects some of the previously established methods for fabrication of biofibres. In the second chapter, particular attention is given to the overall experimental fabrication methods and characterization analyses conducted in the work. Chapters three to five present the main findings of this work, in which readers will discover how novel hybrid hydrogel fibres with an inner core of chitosan and alginate were prepared and characterized, how graphene was incorporated into coaxial wet-spun biofibres, and how one-dimensional triaxial fibres were developed using a novel coaxial wet-spinning fibre production method and applied as potential battery devices. In the final chapter of this work, the author summarizes the main achievements of the work and outlines some recommendations for future research.
This volume contains the Proceedings of the RILEM TC 252-CMB International Symposium on the Chemo-Mechanical Characterization of Bituminous Materials. The Symposium was attended by researchers and practitioners from different fields presenting the latest findings in the chemical, mechanical, and microstructural characterization of bituminous materials. The book offers new and cutting edge papers on innovative techniques for the characterization of bituminous materials, gaining new insights into current issues such as effects of aging, moisture, and temperature.
This book is the first to focus specifically on cancer nanotheranostics. Each of the chapters that make up this comprehensive volume is authored by a researcher, clinician, or regulatory agency member known for their expertise in this field. Theranostics, the technology to simultaneously diagnose and treat a disease, is a nascent field that is growing rapidly in this era of personalized medicine. As the need for cost-effective disease diagnosis grows, drug delivery systems that can act as multifunctional carriers for imaging contrast and therapy agents could provide unique breakthroughs in oncology. Nanotechnology has enabled the development of smart theranostic platforms that can concurrently diagnose disease, start primary treatment, monitor response and initiate secondary treatments if required. In oncology, chemotherapeutics have been routinely used. Some drugs have proven effective but all carry risks of adverse side effects. There is growing interest in using remotely triggered drug delivery systems to limit cytotoxicity in the diseased area. This book reviews the use of theranostic nanoparticles for cancer applications over the past decade. First, it briefly discusses the challenges and limitations of conventional cancer treatments, and presents an overview of the use of nanotechnology in treating cancer. These introductory chapters are followed by those exploring cancer diagnosis and a myriad of delivery methods for nanotherapeutics. The book also addresses multifunctional platforms, treatment monitoring, and regulatory considerations. As a whole, the book aims to briefly summarize the development and clinical potential of various nanotheranostics for cancer applications, and to delineate the challenges that must be overcome for successful clinical development and implementation of such cancer theranostics.
Scaffold bone replacements are a safe and effective way to cure bone abnormalities, and porous scaffolds can be manufactured using additive manufacturing technology. When scaffolds are implanted in a damaged location, they quickly connect to the host tissue and integrate, stimulating bone production and development. The qualities of porous titanium must be matched to the properties of human bones (i.e., age, sex, and hormones). Using subtractive manufacturing, it is extremely difficult to create the complicated porous structure necessary for the desired characteristic. The Handbook of Research on Advanced Functional Materials for Orthopedic Applications highlights current research pertinent to the orthopedic applications of additive-produced scaffolds in order to consider the latest breakthroughs in the synthesis and multifunctional applications of scaffolds. Covering key topics such as tissue, additive manufacturing, and biomaterial, this major reference work is ideal for industry professionals, engineers, researchers, academicians, practitioners, scholars, instructors, and students.
This collection presents papers on the science, engineering, and technology of shape castings, with contributions from researchers worldwide. Among the topics that are addressed are structure-property-performance relationships, modeling of casting processes, and the effect of casting defects on the mechanical properties of cast alloys.
This book effectively links the latest scientific advances to current technological applications of polymers, mainly focusing on biodegradable polymers obtained from biomass. The individual chapters were written by academic and industry researchers alike, introducing readers to topics that have received little attention in the literature to date. Key topics covered include polymers used in various areas such as food packaging, pharmaceuticals, energy production and the cosmetics industry, as well as the treatment of aqueous effluents. |
You may like...
Polymers for Energy Storage and Delivery…
Kirt A. Page, Christopher L. Soles, …
Hardcover
R5,424
Discovery Miles 54 240
The Science and Technology of Silicones…
Stephen J. Clarson, John J Fitzgerald, …
Hardcover
R2,525
Discovery Miles 25 250
Sustainable Nanotechnology and the…
Najm Shamim, Virender K. Sharma
Hardcover
R5,423
Discovery Miles 54 230
Scientific Basis for Nuclear Waste…
Lara Duro, Javier Gimenez, …
Hardcover
R1,966
Discovery Miles 19 660
Intelligent Materials for Controlled…
Steven M Dinh, John DeNuzzio, …
Hardcover
R2,292
Discovery Miles 22 920
|