![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > General theory of computing > Mathematical theory of computation
Fuzzy cognitive maps (FCMs) have gained popularity in the scientific community due to their capabilities in modeling and decision making for complex problems.This book presents a novel algorithm called glassoFCM to enable automatic learning of FCM models from data. Specifically, glassoFCM is a combination of two methods, glasso (a technique originated from machine learning) for data modeling and FCM simulation for decision making. The book outlines that glassoFCM elaborates simple, accurate, and more stable models that are easy to interpret and offer meaningful decisions. The research results presented are based on an investigation related to a real-world business intelligence problem to evaluate characteristics that influence employee work readiness.Finally, this book provides readers with a step-by-step guide of the 'fcm' package to execute and visualize their policies and decisions through the FCM simulation process.
This book introduces new models based on R-calculus and theories of belief revision for dealing with large and changing data. It extends R-calculus from first-order logic to propositional logic, description logics, modal logic and logic programming, and from minimal change semantics to subset minimal change, pseudo-subformula minimal change and deduction-based minimal change (the last two minimal changes are newly defined). And it proves soundness and completeness theorems with respect to the minimal changes in these logics. To make R-calculus computable, an approximate R-calculus is given which uses finite injury priority method in recursion theory. Moreover, two applications of R-calculus are given to default theory and semantic inheritance networks. This book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners in the field of logic. Also it is very useful for all those who are interested in data, digitization and correctness and consistency of information, in modal logics, non monotonic logics, decidable/undecidable logics, logic programming, description logics, default logics and semantic inheritance networks.
The 2017 PIMS-CRM Summer School in Probability was held at the Pacific Institute for the Mathematical Sciences (PIMS) at the University of British Columbia in Vancouver, Canada, during June 5-30, 2017. It had 125 participants from 20 different countries, and featured two main courses, three mini-courses, and twenty-nine lectures. The lecture notes contained in this volume provide introductory accounts of three of the most active and fascinating areas of research in modern probability theory, especially designed for graduate students entering research: Scaling limits of random trees and random graphs (Christina Goldschmidt) Lectures on the Ising and Potts models on the hypercubic lattice (Hugo Duminil-Copin) Extrema of the two-dimensional discrete Gaussian free field (Marek Biskup) Each of these contributions provides a thorough introduction that will be of value to beginners and experts alike.
This book discusses all the major nature-inspired algorithms with a focus on their application in the context of solving navigation and routing problems. It also reviews the approximation methods and recent nature-inspired approaches for practical navigation, and compares these methods with traditional algorithms to validate the approach for the case studies discussed. Further, it examines the design of alternative solutions using nature-inspired techniques, and explores the challenges of navigation and routing problems and nature-inspired metaheuristic approaches.
This book describes some basic principles that allow developers of computer programs (computer scientists, software engineers, programmers) to clearly think about the artifacts they deal with in their daily work: data types, programming languages, programs written in these languages that compute from given inputs wanted outputs, and programs that describe continuously executing systems. The core message is that clear thinking about programs can be expressed in a single universal language, the formal language of logic. Apart from its universal elegance and expressiveness, this "logical" approach to the formal modeling of and reasoning about computer programs has another advantage: due to advances in computational logic (automated theorem proving, satisfiability solving, model checking), nowadays much of this process can be supported by software. This book therefore accompanies its theoretical elaborations by practical demonstrations of various systems and tools that are based on respectively make use of the presented logical underpinnings.
This book reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. Features: presents an overview of the underlying mathematical theory, covering vector spaces, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations; reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces; examines techniques for computing curvature from polygonal meshes; describes algorithms for mesh smoothing, mesh parametrization, and mesh optimization and simplification; discusses point location databases and convex hulls of point sets; investigates the reconstruction of triangle meshes from point clouds, including methods for registration of point clouds and surface reconstruction; provides additional material at a supplementary website; includes self-study exercises throughout the text.
This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.
An original comprehensive guide on computational nanomechanics discussing basic concepts and implications in areas such as computational physics, materials, mechanics and engineering as well as several other interdisciplinary avenues. This book makes the underlying theory accessible to readers without specialised training or extensive background in quantum physics, statistical mechanics, or theoretical chemistry. It combines a careful treatment of theoretical concepts with a detailed tutorial on computer software and computing implementation, including multiscale simulation and computational statistical theory. Multidisciplinary perspectives are provided, yielding a true insight on the applications of computational nanomechanics across diverse engineering fields. The book can serve as a practical guide with step-by-step discussion of coding, example problems and case studies. This book will be essential reading for students new to the subject, as well as an excellent reference for graduates and researchers.
This practical guidebook describes the basic concepts, the mathematical developments, and the engineering methodologies for exploiting possibility theory for the computer-based design of an information fusion system where the goal is decision support for industries in smart ICT (information and communications technologies). This exploitation of possibility theory improves upon probability theory, complements Dempster-Shafer theory, and fills an important gap in this era of Big Data and Internet of Things. The book discusses fundamental possibilistic concepts: distribution, necessity measure, possibility measure, joint distribution, conditioning, distances, similarity measures, possibilistic decisions, fuzzy sets, fuzzy measures and integrals, and finally, the interrelated theories of uncertainty..uncertainty. These topics form an essential tour of the mathematical tools needed for the latter chapters of the book. These chapters present applications related to decision-making and pattern recognition schemes, and finally, a concluding chapter on the use of possibility theory in the overall challenging design of an information fusion system. This book will appeal to researchers and professionals in the field of information fusion and analytics, information and knowledge processing, smart ICT, and decision support systems.
This book constitutes the proceedings of the Third International Conference on 6G for Future Wireless Networks, 6GN 2020, held in Tianjin, China, in August 2020. The conference was held virtually due to the COVID-19 pandemic. The 45 full papers were selected from 109 submissions and present the state of the art and practical applications of 6G technologies. The papers are arranged thematically on network scheduling and optimization; wireless system and platform; intelligent applications; network performance evaluation; cyber security and privacy; technologies for private 5G/6G.
The focus of these conference proceedings is on research, development, and applications in the fields of numerical geometry, scientific computing and numerical simulation, particularly in mesh generation and related problems. In addition, this year's special focus is on Delaunay triangulations and their applications, celebrating the 130th birthday of Boris Delaunay. In terms of content, the book strikes a balance between engineering algorithms and mathematical foundations. It presents an overview of recent advances in numerical geometry, grid generation and adaptation in terms of mathematical foundations, algorithm and software development and applications. The specific topics covered include: quasi-conformal and quasi-isometric mappings, hyperelastic deformations, multidimensional generalisations of the equidistribution principle, discrete differential geometry, spatial and metric encodings, Voronoi-Delaunay theory for tilings and partitions, duality in mathematical programming and numerical geometry, mesh-based optimisation and optimal control methods. Further aspects examined include iterative solvers for variational problems and algorithm and software development. The applications of the methods discussed are multidisciplinary and include problems from mathematics, physics, biology, chemistry, material science, and engineering.
Edited in collaboration with FoLLI, the Association of Logic, Language and Information this book constitutes the refereed proceedings of the Second Interdisciplinary Workshop on Logic, Language, and Meaning, TLLM 2020, held in Tsinghua, China, in December 2020. The 12 full papers together presented were fully reviewed and selected from 40 submissions. Due to COVID-19 the workshop will be held online. The workshop covers a wide range of topics where monotonicity is discussed in the context of logic, causality, belief revision, quantification, polarity, syntax, comparatives, and various semantic phenomena in particular languages.
This book features selected papers from the 6th International Conference on Mathematics and Computing (ICMC 2020), organized by Sikkim University, Gangtok, Sikkim, India, during September 2020. It covers recent advances in the field of mathematics, statistics, and scientific computing. The book presents innovative work by leading academics, researchers, and experts from industry.
This two-volume set constitutes the refereed proceedings of the 16th International Conference on Collaborative Computing: Networking, Applications, and Worksharing, CollaborateCom 2020, held in Shanghai, China, in October 2020.The 61 full papers and 16 short papers presented were carefully reviewed and selected from 211 submissions. The papers reflect the conference sessions as follows: Collaborative Applications for Network and E-Commerce; Optimization for Collaborate System; Cloud and Edge Computing; Artificial Intelligence; AI Application and Optimization; Classification and Recommendation; Internet of Things; Collaborative Robotics and Autonomous Systems; Smart Transportation.
This book constitutes the thoroughly refereed proceedings of the themed workshops of the 6th International Conference on Life System Modeling and Simulation, LSMS 2020, and of the 6th International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2020, held in Hangzhou, China, in October 2020.The 36 full and 2 short papers presented were carefully reviewed and selected from over 165 submissions. The papers of this volume are organized in topical sections on: smart energy systems and devices; intelligent manufacturing and systems; and intelligent biology and information systems.
This new edition of a well-received textbook provides a concise introduction to both the theoretical and experimental aspects of quantum information at the graduate level. While the previous edition focused on theory, the book now incorporates discussions of experimental platforms. Several chapters on experimental implementations of quantum information protocols have been added: implementations using neutral atoms, trapped ions, optics, and solidstate systems are each presented in its own chapter. Previous chapters on entanglement, quantum measurements, quantum dynamics, quantum cryptography, and quantum algorithms have been thoroughly updated, and new additions include chapters on the stabilizer formalism and the Gottesman-Knill theorem as well as aspects of classical and quantum information theory. To facilitate learning, each chapter starts with a clear motivation to the topic and closes with exercises and a recommended reading list. Quantum Information Processing: Theory and Implementation will be essential to graduate students studying quantum information as well as and researchers in other areas of physics who wish to gain knowledge in the field.
In this book the authors aim to endow the reader with an operational, conceptual, and methodological understanding of the discrete mathematics that can be used to study, understand, and perform computing. They want the reader to understand the elements of computing, rather than just know them. The basic topics are presented in a way that encourages readers to develop their personal way of thinking about mathematics. Many topics are developed at several levels, in a single voice, with sample applications from within the world of computing. Extensive historical and cultural asides emphasize the human side of mathematics and mathematicians. By means of lessons and exercises on "doing" mathematics, the book prepares interested readers to develop new concepts and invent new techniques and technologies that will enhance all aspects of computing. The book will be of value to students, scientists, and engineers engaged in the design and use of computing systems, and to scholars and practitioners beyond these technical fields who want to learn and apply novel computational ideas.
This book constitutes the refereed proceedings of the 23rd International Conference on Distributed and Computer and Communication Networks, DCCN 2020, held in Moscow, Russia, in September 2020. Due to the COVID-19 pandemic the conference was held online. The 43 papers were carefully reviewed and selected from 167 submissions.The papers are organized in the following topical sections: computer and communication networks and technologies; analytical modeling of distributed systems, and distributed systems applications.
This book provides both conceptual knowledge of quantitative finance and a hands-on approach to using Python. It begins with a description of concepts prior to the application of Python with the purpose of understanding how to compute and interpret results. This book offers practical applications in the field of finance concerning Python, a language that is more and more relevant in the financial arena due to big data. This will lead to a better understanding of finance as it gives a descriptive process for students, academics and practitioners.
Computability theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the 1930s. This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their automorphisms, and subrecursive hierarchy classifications. Recent work in computability theory has focused on Turing definability and promises to have far-reaching mathematical, scientific, and philosophical consequences.
This volume explores the connections between mathematical modeling, computational methods, and high performance computing, and how recent developments in these areas can help to solve complex problems in the natural sciences and engineering. The content of the book is based on talks and papers presented at the conference Modern Mathematical Methods and High Performance Computing in Science & Technology (M3HPCST), held at Inderprastha Engineering College in Ghaziabad, India in January 2020. A wide range of both theoretical and applied topics are covered in detail, including the conceptualization of infinity, efficient domain decomposition, high capacity wireless communication, infectious disease modeling, and more. These chapters are organized around the following areas: Partial and ordinary differential equations Optimization and optimal control High performance and scientific computing Stochastic models and statistics Recent Trends in Mathematical Modeling and High Performance Computing will be of interest to researchers in both mathematics and engineering, as well as to practitioners who face complex models and extensive computations.
This book presents the state of the art in the fields of formal logic pioneered by Graham Priest. It includes advanced technical work on the model and proof theories of paraconsistent logic, in contributions from top scholars in the field. Graham Priest's research has had a considerable influence on the field of philosophical logic, especially with respect to the themes of dialetheism-the thesis that there exist true but inconsistent sentences-and paraconsistency-an account of deduction in which contradictory premises do not entail the truth of arbitrary sentences. Priest's work has regularly challenged researchers to reappraise many assumptions about rationality, ontology, and truth. This book collects original research by some of the most esteemed scholars working in philosophical logic, whose contributions explore and appraise Priest's work on logical approaches to problems in philosophy, linguistics, computation, and mathematics. They provide fresh analyses, critiques, and applications of Priest's work and attest to its continued relevance and topicality. The book also includes Priest's responses to the contributors, providing a further layer to the development of these themes .
This book provides a comprehensive examination of preconditioners for boundary element discretisations of first-kind integral equations. Focusing on domain-decomposition-type and multilevel methods, it allows readers to gain a good understanding of the mechanisms and necessary techniques in the analysis of the preconditioners. These techniques are unique for the discretisation of first-kind integral equations since the resulting systems of linear equations are not only large and ill-conditioned, but also dense. The book showcases state-of-the-art preconditioning techniques for boundary integral equations, presenting up-to-date research. It also includes a detailed discussion of Sobolev spaces of fractional orders to familiarise readers with important mathematical tools for the analysis. Furthermore, the concise overview of adaptive BEM, hp-version BEM, and coupling of FEM-BEM provides efficient computational tools for solving practical problems with applications in science and engineering.
This book constitutes the refereed proceedings of the 8th International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making, IUKM 2020, held in Phuket, Thailand, in November 2020.* The 35 full papers presented were carefully reviewed and selected from 55 submissions. The papers deal with all aspects of uncertainty modelling and management and are organized in topical sections on uncertainty management and decision support; machine learning; machine learning applications; econometric applications; and statistical methods. * The conference was held virtually due to the COVID-19 pandemic.
This book constitutes the refereed post-conference proceedings of the 6th Russian Supercomputing Days, RuSCDays 2020, held in Moscow, Russia, in September 2020.* The 51 revised full and 4 revised short papers presented were carefully reviewed and selected from 106 submissions. The papers are organized in the following topical sections: parallel algorithms; supercomputer simulation; HPC, BigData, AI: architectures, technologies, tools; and distributed and cloud computing. * The conference was held virtually due to the COVID-19 pandemic. |
![]() ![]() You may like...
Australian Bird Guide - Concise Edition
Jeff Davies, Peter Menkhorst, …
Paperback
R656
Discovery Miles 6 560
Plays Worth Remembering - Volume 1 - A…
William C. Ade
Hardcover
Advances in Production and Industrial…
P. M. Pandey, Pradeep Kumar, …
Paperback
R4,516
Discovery Miles 45 160
|