![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer hardware & operating systems > Computer architecture & logic design > Parallel processing
Since the publication of the first edition, parallel computing technology has gained considerable momentum. A large proportion of this has come from the improvement in VLSI techniques, offering one to two orders of magnitude more devices than previously possible. A second contributing factor in the fast development of the subject is commercialization. The supercomputer is no longer restricted to a few well-established research institutions and large companies. A new computer breed combining the architectural advantages of the supercomputer with the advance of VLSI technology is now available at very attractive prices. A pioneering device in this development is the transputer, a VLSI processor specifically designed to operate in large concurrent systems. Parallel Computers 2: Architecture, Programming and Algorithms reflects the shift in emphasis of parallel computing and tracks the development of supercomputers in the years since the first edition was published. It looks at large-scale parallelism as found in transputer ensembles. This extensively rewritten second edition includes major new sections on the transputer and the OCCAM language. The book contains specific information on the various types of machines available, details of computer architecture and technologies, and descriptions of programming languages and algorithms. Aimed at an advanced undergraduate and postgraduate level, this handbook is also useful for research workers, machine designers, and programmers concerned with parallel computers. In addition, it will serve as a guide for potential parallel computer users, especially in disciplines where large amounts of computer time are regularly used.
A state-of-the-art guide for the implementation of distributed simulation technology.
This book contains the papers presented at the Parallel
Computational Fluid Dynamics 1998 Conference.
Digital Signal Processing Algorithms describes computational number theory and its applications to deriving fast algorithms for digital signal processing. It demonstrates the importance of computational number theory in the design of digital signal processing algorithms and clearly describes the nature and structure of the algorithms themselves. The book has two primary focuses: first, it establishes the properties of discrete-time sequence indices and their corresponding fast algorithms; and second, it investigates the properties of the discrete-time sequences and the corresponding fast algorithms for processing these sequences.
Introduces mechanical engineers to high-performance computing using the new generation of computers with vector and parallel processing capabilities that allow the solution to problems beyond the ken of traditional computers. The chapters present an introduction and overview, explain several methodo
One critical barrier leading to successful implementation of flexible manufacturing and related automated systems is the ever-increasing complexity of their modeling, analysis, simulation, and control. Research and development over the last three decades has provided new theory and graphical tools based on Petri nets and related concepts for the design of such systems. The purpose of this book is to introduce a set of Petri-net-based tools and methods to address a variety of problems associated with the design and implementation of flexible manufacturing systems (FMSs), with several implementation examples.There are three ways this book will directly benefit readers. First, the book will allow engineers and managers who are responsible for the design and implementation of modern manufacturing systems to evaluate Petri nets for applications in their work. Second, it will provide sufficient breadth and depth to allow development of Petri-net-based industrial applications. Third, it will allow the basic Petri net material to be taught to industrial practitioners, students, and academic researchers much more efficiently. This will foster further research and applications of Petri nets in aiding the successful implementation of advanced manufacturing systems.
Companies are spending billions on machine learning projects, but it's money wasted if the models can't be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You'll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. Understand the steps to build a machine learning pipeline Build your pipeline using components from TensorFlow Extended Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines Work with data using TensorFlow Data Validation and TensorFlow Transform Analyze a model in detail using TensorFlow Model Analysis Examine fairness and bias in your model performance Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices Learn privacy-preserving machine learning techniques
Since the publication of the first edition, parallel computing
technology has gained considerable momentum. A large proportion of
this has come from the improvement in VLSI techniques, offering one
to two orders of magnitude more devices than previously possible. A
second contributing factor in the fast development of the subject
is commercialization. The supercomputer is no longer restricted to
a few well-established research institutions and large companies. A
new computer breed combining the architectural advantages of the
supercomputer with the advance of VLSI technology is now available
at very attractive prices. A pioneering device in this development
is the transputer, a VLSI processor specifically designed to
operate in large concurrent systems.
The use of parallel programming and architectures is essential for simulating and solving problems in modern computational practice. There has been rapid progress in microprocessor architecture, interconnection technology and software devel- ment, which are in?uencing directly the rapid growth of parallel and distributed computing. However, in order to make these bene?ts usable in practice, this dev- opment must be accompanied by progress in the design, analysis and application aspects of parallel algorithms. In particular, new approaches from parallel num- ics are important for solving complex computational problems on parallel and/or distributed systems. The contributions to this book are focused on topics most concerned in the trends of today's parallel computing. These range from parallel algorithmics, progr- ming, tools, network computing to future parallel computing. Particular attention is paid to parallel numerics: linear algebra, differential equations, numerical integ- tion, number theory and their applications in computer simulations, which together form the kernel of the monograph. We expect that the book will be of interest to scientists working on parallel computing, doctoral students, teachers, engineers and mathematicians dealing with numerical applications and computer simulations of natural phenomena.
This book constitutes the proceedings of the 5th OpenSHMEM Workshop, held in Baltimore, MD, USA, in August 2018. The 14 full papers presented in this book were carefully reviewed and selected for inclusion in this volume. The papers discuss a variety of ideas for extending the OpenSHMEM specification and discuss a variety of concepts, including interesting use of OpenSHMEM in HOOVER - a distributed, flexible, and scalable streaming graph processor and scaling OpenSHMEM to handle massively parallel processor arrays. The papers are organized in the following topical sections: OpenSHMEM library extensions and implementations; OpenSHMEM use and applications; and OpenSHMEM simulators, tools, and benchmarks.
The four-volume set LNCS 11334-11337 constitutes the proceedings of the 18th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2018, held in Guangzhou, China, in November 2018. The 141 full and 50 short papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on Distributed and Parallel Computing; High Performance Computing; Big Data and Information Processing; Internet of Things and Cloud Computing; and Security and Privacy in Computing.
This book constitutes the proceedings of the 24th International Conference on Parallel and Distributed Computing, Euro-Par 2018, held in Turin, Italy, in August 2018. The 57 full papers presented in this volume were carefully reviewed and selected from 194 submissions. They were organized in topical sections named: support tools and environments; performance and power modeling, prediction and evaluation; scheduling and load balancing; high performance architecutres and compilers; parallel and distributed data management and analytics; cluster and cloud computing; distributed systems and algorithms; parallel and distributed programming, interfaces, and languages; multicore and manycore methods and tools; theory and algorithms for parallel computation and networking; parallel numerical methods and applications; and accelerator computing for advanced applications.
This book constitutes revised selected papers from the workshops held at 24th International Conference on Parallel and Distributed Computing, Euro-Par 2018, which took place in Turin, Italy, in August 2018. The 64 full papers presented in this volume were carefully reviewed and selected from 109 submissions. Euro-Par is an annual, international conference in Europe, covering all aspects of parallel and distributed processing. These range from theory to practice, from small to the largest parallel and distributed systems and infrastructures, from fundamental computational problems to full-edged applications, from architecture, compiler, language and interface design and implementation to tools, support infrastructures, and application performance aspects.
Learn how to institute and implement enterprise architecture in your organisation. You can make a quick start and establish a baseline for your enterprise architecture within ten weeks, then grow and stabilise the architecture over time using the proven Ready, Set, Go Approach. Reading this book will: Give you directions on how to institute and implement enterprise architecture in your organization. You will be able to build close relationships with stakeholders and delivery teams, but you will not need to micromanage the architectures operations; Increase your awareness that enterprise architecture is about business, not information technology; Enable you to initiate and facilitate dramatic business development. The architecture of an enterprise must be tolerant of currently unknown business initiatives; Show you how to get a holistic view of the process of implementing enterprise architecture; Make you aware that information is a key business asset and that information architecture is a key part of the enterprise architecture; Allow you to learn from our experiences. This book is based on our 30 years of work in the enterprise architecture field, colleagues in Europe, customer cases, and students. If your company is about to make a major change and you are looking for a way to reduce the changes into manageable pieces -- and still retain control of how they fit together -- this is your handbook. Maybe you are already acting as an enterprise architect and using a formal method, but you need practical hints. Or maybe you are about to set up an enterprise architect network or group of specialists and need input on how to organise your work. The Ready-Set-Go method for introducing enterprise architecture provides you, the enterprise architect, with an immediate understanding of the basic steps for starting, organising, and operating the entirety of your organisations architecture. Chapter 1 shows how to model and analyse your business operations, assess their current status, construct a future scenario, compare it to the current structure, analyse what you see, and show the result in a city plan. Chapter 2 deals with preparing for the implementation of the architecture with governance, enterprise architecture organisation, staffing, etc. This is the organising step before beginning the actual work. Chapter 3 establishes how to implement a city plan in practice. It deals with the practicalities of working as an enterprise architect and is called the running step. The common thread through all aspects of the enterprise architects work is the architects mastery of a number of tools, such as business models, process models, information models, and matrices. We address how to initiate the architecture process within the organisation in such a way that the overarching enterprise architecture and architecture-driven approach can be applied methodically and gradually improved.
The prefix operation on a set of data is one of the simplest and most useful building blocks in parallel algorithms. This introduction to those aspects of parallel programming and parallel algorithms that relate to the prefix problem emphasizes its use in a broad range of familiar and important problems. The book illustrates how the prefix operation approach to parallel computing leads to fast and efficient solutions to many different kinds of problems. Students, teachers, programmers, and computer scientists will want to read this clear exposition of an important approach.
Parallel Computing Architectures and APIs: IoT Big Data Stream Processing commences from the point high-performance uniprocessors were becoming increasingly complex, expensive, and power-hungry. A basic trade-off exists between the use of one or a small number of such complex processors, at one extreme, and a moderate to very large number of simpler processors, at the other. When combined with a high-bandwidth, interprocessor communication facility leads to significant simplification of the design process. However, two major roadblocks prevent the widespread adoption of such moderately to massively parallel architectures: the interprocessor communication bottleneck, and the difficulty and high cost of algorithm/software development. One of the most important reasons for studying parallel computing architectures is to learn how to extract the best performance from parallel systems. Specifically, you must understand its architectures so that you will be able to exploit those architectures during programming via the standardized APIs. This book would be useful for analysts, designers and developers of high-throughput computing systems essential for big data stream processing emanating from IoT-driven cyber-physical systems (CPS). This pragmatic book: Devolves uniprocessors in terms of a ladder of abstractions to ascertain (say) performance characteristics at a particular level of abstraction Explains limitations of uniprocessor high performance because of Moore's Law Introduces basics of processors, networks and distributed systems Explains characteristics of parallel systems, parallel computing models and parallel algorithms Explains the three primary categorical representatives of parallel computing architectures, namely, shared memory, message passing and stream processing Introduces the three primary categorical representatives of parallel programming APIs, namely, OpenMP, MPI and CUDA Provides an overview of Internet of Things (IoT), wireless sensor networks (WSN), sensor data processing, Big Data and stream processing Provides introduction to 5G communications, Edge and Fog computing Parallel Computing Architectures and APIs: IoT Big Data Stream Processing discusses stream processing that enables the gathering, processing and analysis of high-volume, heterogeneous, continuous Internet of Things (IoT) big data streams, to extract insights and actionable results in real time. Application domains requiring data stream management include military, homeland security, sensor networks, financial applications, network management, web site performance tracking, real-time credit card fraud detection, etc.
Exploring new trends in computer technology, Corporal introduces an innovative and exciting concept: Transport Triggered Architecture (TTAs). Unlike most traditional architectures, where programmed operations trigger internal data transports, TTAs function through programming the data transports themselves. As a result the new architecture alleviates bottlenecks, allows for new code-generation optimizations and exploits hardware more efficiently. Founded on the author’s recent research, this book evaluates the attributes of different classes of architectures. It demonstrates how TTAs can be used as a template for automatic generation of application-specific processors and highlights their suitability for embedded system design. Several commercial TTA implementations have proven its concepts and advantages. Features includes:
Microprocessor Architectures is cutting-edge text which will prove invaluable to both industrial hardware and software engineers involved in embedded system design and to postgraduate electrical engineering and computer science students. This clearly-structured reference demonstrates the versatility of TTAs and explores their influential role in the next generation of computer architecture.
Parallel Programming: Concepts and Practice provides an upper level introduction to parallel programming. In addition to covering general parallelism concepts, this text teaches practical programming skills for both shared memory and distributed memory architectures. The authors' open-source system for automated code evaluation provides easy access to parallel computing resources, making the book particularly suitable for classroom settings.
Current advances in High Performance Computing (HPC) increasingly impact efficient software development workflows. Programmers for HPC applications need to consider trends such as increased core counts, multiple levels of parallelism, reduced memory per core, and I/O system challenges in order to derive well performing and highly scalable codes. At the same time, the increasing complexity adds further sources of program defects. While novel programming paradigms and advanced system libraries provide solutions for some of these challenges, appropriate supporting tools are indispensable. Such tools aid application developers in debugging, performance analysis, or code optimization and therefore make a major contribution to the development of robust and efficient parallel software. This book introduces a selection of the tools presented and discussed at the 7th International Parallel Tools Workshop, held in Dresden, Germany, September 3-4, 2013.
Advances in optical technologies have made it possible to implement optical interconnections in future massively parallel processing systems. Photons are non-charged particles, and do not naturally interact. Consequently, there are many desirable characteristics of optical interconnects, e.g. high speed (speed of light), increased fanout, high bandwidth, high reliability, longer interconnection lengths, low power requirements, and immunity to EMI with reduced crosstalk. Optics can utilize free-space interconnects as well as guided wave technology, neither of which has the problems of VLSI technology mentioned above. Optical interconnections can be built at various levels, providing chip-to-chip, module-to-module, board-to-board, and node-to-node communications. Massively parallel processing using optical interconnections poses new challenges; new system configurations need to be designed, scheduling and data communication schemes based on new resource metrics need to be investigated, algorithms for a wide variety of applications need to be developed under the novel computation models that optical interconnections permit, and so on. Parallel Computing Using Optical Interconnections is a collection of survey articles written by leading and active scientists in the area of parallel computing using optical interconnections. This is the first book which provides current and comprehensive coverage of the field, reflects the state of the art from high-level architecture design and algorithmic points of view, and points out directions for further research and development.
Study the past, if you would divine the future. -CONFUCIUS A well written, organized, and concise survey is an important tool in any newly emerging field of study. This present text is the first of a new series that has been established to promote the publications of such survey books. A survey serves several needs. Virtually every new research area has its roots in several diverse areas and many of the initial fundamental results are dispersed across a wide range of journals, books, and conferences in many dif ferent sub fields. A good survey should bring together these results. But just a collection of articles is not enough. Since terminology and notation take many years to become standardized, it is often difficult to master the early papers. In addition, when a new research field has its foundations outside of computer science, all the papers may be difficult to read. Each field has its own view of el egance and its own method of presenting results. A good survey overcomes such difficulties by presenting results in a notation and terminology that is familiar to most computer scientists. A good survey can give a feel for the whole field. It helps identify trends, both successful and unsuccessful, and it should point new researchers in the right direction.
This book constitutes thoroughly refereed post-conference proceedings of the workshops of the 17th International Conference on Parallel Computing, Euro-Par 2011, held in Bordeaux, France, in August 2011. The papers of these 12 workshops CCPI, CGWS, HeteroPar, HiBB, HPCVirt, HPPC, HPSS HPCF, PROPER, CCPI, and VHPC focus on promotion and advancement of all aspects of parallel and distributed computing.
This book constitutes thoroughly refereed post-conference proceedings of the workshops of the 17th International Conference on Parallel Computing, Euro-Par 2011, held in Bordeaux, France, in August 2011. The papers of these 12 workshops CCPI, CGWS, HeteroPar, HiBB, HPCVirt, HPPC, HPSS HPCF, PROPER, CCPI, and VHPC focus on promotion and advancement of all aspects of parallel and distributed computing.
Overview and Goals This book is dedicated to scheduling for parallel processing. Presenting a research ?eld as broad as this one poses considerable dif?culties. Scheduling for parallel computing is an interdisciplinary subject joining many ?elds of science and te- nology. Thus, to understand the scheduling problems and the methods of solving them it is necessary to know the limitations in related areas. Another dif?culty is that the subject of scheduling parallel computations is immense. Even simple search in bibliographical databases reveals thousands of publications on this topic. The - versity in understanding scheduling problems is so great that it seems impossible to juxtapose them in one scheduling taxonomy. Therefore, most of the papers on scheduling for parallel processing refer to one scheduling problem resulting from one way of perceiving the reality. Only a few publications attempt to arrange this ?eld of knowledge systematically. In this book we will follow two guidelines. One guideline is a distinction - tween scheduling models which comprise a set of scheduling problems solved by dedicated algorithms. Thus, the aim of this book is to present scheduling models for parallel processing, problems de?ned on the grounds of certain scheduling models, and algorithms solving the scheduling problems. Most of the scheduling problems are combinatorial in nature. Therefore, the second guideline is the methodology of computational complexity theory. Inthisbookwepresentfourexamplesofschedulingmodels. Wewillgodeepinto the models, problems, and algorithms so that after acquiring some understanding of them we will attempt to draw conclusions on their mutual relationships. |
![]() ![]() You may like...
Object-Oriented Analysis and Design for…
Raul Sidnei Wazlawick
Paperback
R1,186
Discovery Miles 11 860
Java Parables Volume 1 - Object-Oriented…
Pamela Osakwe Leon-Mezue
Hardcover
R975
Discovery Miles 9 750
Numerical Geometry, Grid Generation and…
Vladimir A. Garanzha, Lennard Kamenski, …
Hardcover
R6,387
Discovery Miles 63 870
|