Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Academic & Education > University Of Johannesburg > Physics
Changes and additions to the new edition of this classic textbook include a new chapter on symmetries, new problems and examples, improved explanations, more numerical problems to be worked on a computer, new applications to solid state physics, and consolidated treatment of time-dependent potentials.
This new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes. The book is divided into two main parts: Deterministic methods and stochastic methods in computational physics. Based on concrete problems, the first part discusses numerical differentiation and integration, as well as the treatment of ordinary differential equations. This is extended by a brief introduction to the numerics of partial differential equations. The second part deals with the generation of random numbers, summarizes the basics of stochastics, and subsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. The final two chapters discuss data analysis and stochastic optimization. All this is again motivated and augmented by applications from physics. In addition, the book offers a number of appendices to provide the reader with information on topics not discussed in the main text. Numerous problems with worked-out solutions, chapter introductions and summaries, together with a clear and application-oriented style support the reader. Ready to use C++ codes are provided online.
Reviews from the First Edition: "An excellent text a ] The postulates of quantum mechanics and the mathematical underpinnings are discussed in a clear, succinct manner." (American Scientist) "No matter how gently one introduces students to the concept of Diraca (TM)s bras and kets, many are turned off. Shankar attacks the problem head-on in the first chapter, and in a very informal style suggests that there is nothing to be frightened of." (Physics Bulletin) Reviews of the Second Edition: "This massive text of 700 and odd pages has indeed an excellent get-up, is very verbal and expressive, and has extensively worked out calculational details---all just right for a first course. The style is conversational, more like a corridor talk or lecture notes, though arranged as a text. a ] It would be particularly useful to beginning students and those in allied areas like quantum chemistry." (Mathematical Reviews) R. Shankar has introduced major additions and updated key presentations in this second edition of Principles of Quantum Mechanics. New features of this innovative text include an entirely rewritten mathematical introduction, a discussion of Time-reversal invariance, and extensive coverage of a variety of path integrals and their applications. Additional highlights include: - Clear, accessible treatment of underlying mathematics - A review of Newtonian, Lagrangian, and Hamiltonian mechanics - Student understanding of quantum theory is enhanced by separate treatment of mathematical theorems and physical postulates - Unsurpassed coverage of path integrals and their relevance in contemporary physics The requisite text foradvanced undergraduate- and graduate-level students, Principles of Quantum Mechanics, Second Edition is fully referenced and is supported by many exercises and solutions. The booka (TM)s self-contained chapters also make it suitable for independent study as well as for courses in applied disciplines.
This undergraduate textbook merges traditional solid state physics with contemporary condensed matter physics, providing an up-to-date introduction to the major concepts that form the foundations of condensed materials. The main foundational principles are emphasized, providing students with the knowledge beginners in the field should understand. The book is structured in four parts and allows students to appreciate how the concepts in this broad area build upon each other to produce a cohesive whole as they work through the chapters. Illustrations work closely with the text to convey concepts and ideas visually, enhancing student understanding of difficult material, and end-of-chapter exercises varying in difficulty allow students to put into practice the theory they have covered in each chapter and reinforce new concepts.
A revision of the defining book covering the physics and classical mathematics necessary to understand electromagnetic fields in materials and at surfaces and interfaces. The third edition has been revised to address the changes in emphasis and applications that have occurred in the past twenty years.
An understanding of thermal physics is crucial to much of modern
physics, chemistry and engineering. This book provides a modern
introduction to the main principles that are foundational to
thermal physics, thermodynamics and statistical mechanics. The key
concepts are carefully presented in a clear way, and new ideas are
illustrated with copious worked examples as well as a description
of the historical background to their discovery. Applications are
presented to subjects as diverse as stellar astrophysics,
information and communication theory, condensed matter physics and
climate change. Each chapter concludes with detailed exercises.
|
You may like...
Quinn's Principles and Practice of Nurse…
Suzanne Hughes, Francis Quinn
Paperback
Fundamentals Of Social Research Methods…
C. Bless, C. Higson-Smith, …
Paperback
History Taking And Physical Examination
M.J. Viljoen, N. Sibiya
Paperback
(2)
Small Business Management - Launching…
Nkoana Radipere, Justin Longenecker
Paperback
|