|  |  Welcome to Loot.co.za!  
				Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search | Your cart is empty | ||
| Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Real analysis 
 Nonlinear Differential Problems with Smooth and Nonsmooth Constraints systematically evaluates how to solve boundary value problems with smooth and nonsmooth constraints. Primarily covering nonlinear elliptic eigenvalue problems and quasilinear elliptic problems using techniques amalgamated from a range of sophisticated nonlinear analysis domains, the work is suitable for PhD and other early career researchers seeking solutions to nonlinear differential equations. Although an advanced work, the book is self-contained, requiring only graduate-level knowledge of functional analysis and topology. Whenever suitable, open problems are stated and partial solutions proposed. The work is accompanied by end-of-chapter problems and carefully curated references. 
 This volume considers resistance networks: large graphs which are connected, undirected, and weighted. Such networks provide a discrete model for physical processes in inhomogeneous media, including heat flow through perforated or porous media. These graphs also arise in data science, e.g., considering geometrizations of datasets, statistical inference, or the propagation of memes through social networks. Indeed, network analysis plays a crucial role in many other areas of data science and engineering. In these models, the weights on the edges may be understood as conductances, or as a measure of similarity. Resistance networks also arise in probability, as they correspond to a broad class of Markov chains.The present volume takes the nonstandard approach of analyzing resistance networks from the point of view of Hilbert space theory, where the inner product is defined in terms of Dirichlet energy. The resulting viewpoint emphasizes orthogonality over convexity and provides new insights into the connections between harmonic functions, operators, and boundary theory. Novel applications to mathematical physics are given, especially in regard to the question of self-adjointness of unbounded operators.New topics are covered in a host of areas accessible to multiple audiences, at both beginning and more advanced levels. This is accomplished by directly linking diverse applied questions to such key areas of mathematics as functional analysis, operator theory, harmonic analysis, optimization, approximation theory, and probability theory. 
 The author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric options. 
 This companion piece to the author's 2018 book, A Software Repository for Orthogonal Polynomials, focuses on Gaussian quadrature and the related Christoffel function. The book makes Gauss quadrature rules of any order easily accessible for a large variety of weight functions and for arbitrary precision. It also documents and illustrates known as well as original approximations for Gauss quadrature weights and Christoffel functions. The repository contains 60 datasets, each dealing with a particular weight function. Included are classical, quasi-classical, and, most of all, nonclassical weight functions and associated orthogonal polynomials. 
 
An in-depth look at real analysis and its applications, including
an introduction to wavelet 
 This book deals with the number-theoretic properties of almost all real numbers. It brings together many different types of result never covered within the same volume before, thus showing interactions and common ideas between different branches of the subject. It provides an indispensable compendium of basic results, important theorems and open problems. Starting from the classical results of Borel, Khintchine and Weyl, normal numbers, Diophantine approximation and uniform distribution are all discussed. Questions are generalized to higher dimensions and various non-periodic problems are also considered (for example restricting approximation to fractions with prime numerator and denominator). Finally, the dimensions of some of the exceptional sets of measure zero are considered. 
 This book covers the construction, analysis, and theory of continuous nowhere differentiable functions, comprehensively and accessibly. After illuminating the significance of the subject through an overview of its history, the reader is introduced to the sophisticated toolkit of ideas and tricks used to study the explicit continuous nowhere differentiable functions of Weierstrass, Takagi-van der Waerden, Bolzano, and others. Modern tools of functional analysis, measure theory, and Fourier analysis are applied to examine the generic nature of continuous nowhere differentiable functions, as well as linear structures within the (nonlinear) space of continuous nowhere differentiable functions. To round out the presentation, advanced techniques from several areas of mathematics are brought together to give a state-of-the-art analysis of Riemann's continuous, and purportedly nowhere differentiable, function. For the reader's benefit, claims requiring elaboration, and open problems, are clearly indicated. An appendix conveniently provides background material from analysis and number theory, and comprehensive indices of symbols, problems, and figures enhance the book's utility as a reference work. Students and researchers of analysis will value this unique book as a self-contained guide to the subject and its methods. 
 
Banach spaces and algebras are a key topic of pure mathematics.
Graham Allan's careful and detailed introductory account will prove
essential reading for anyone wishing to specialise in functional
analysis and is aimed at final year undergraduates or masters level
students. Based on the author's lectures to fourth year students at
Cambridge University, the book assumes knowledge typical of first
degrees in mathematics, including metric spaces, analytic topology,
and complex analysis. However, readers are not expected to be
familiar with the Lebesgue theory of measure and integration.
 
 Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise naturally in applications. As a result, fixed point theory is an important area of study in pure and applied mathematics and it is a flourishing area of research. 
 For one- or two-semester junior orsenior level courses in Advanced Calculus, Analysis I, or Real Analysis. This title is part of the Pearson Modern Classicsseries. This text prepares students for future coursesthat use analytic ideas, such as real and complex analysis, partial andordinary differential equations, numerical analysis, fluid mechanics, anddifferential geometry. This book is designed to challenge advanced studentswhile encouraging and helping weaker students. Offering readability,practicality and flexibility, Wade presents fundamental theorems and ideas froma practical viewpoint, showing students the motivation behind the mathematicsand enabling them to construct their own proofs. 
 
 This volume contains the proceedings of the OTAMP 2008 (Operator Theory, Analysis and Mathematical Physics) conference held at the Mathematical Research and Conference Center in Bedlewo near Poznan. It is composed of original research articles describing important results presented at the conference, some with extended review sections, as well as presentations by young researchers. Special sessions were devoted to random and quasi-periodic differential operators, orthogonal polynomials, Jacobi and CMV matrices, and quantum graphs. This volume also reflects new trends in spectral theory, where much emphasis is given to operators with magnetic fields and non-self-adjoint problems. The book is geared towards scientists from advanced undergraduate students to researchers interested in the recent development on the borderline between operator theory and mathematical physics, especially spectral theory for Schr dinger operators and Jacobi matrices. 
 Variational calculus has been the basis of a variety of powerful methods in the ?eld of mechanics of materials for a long time. Examples range from numerical schemes like the ?nite element method to the determination of effective material properties via homogenization and multiscale approaches. In recent years, however, a broad range of novel applications of variational concepts has been developed. This c- prises the modeling of the evolution of internal variables in inelastic materials as well as the initiation and development of material patterns and microstructures. The IUTAM Symposium on "Variational Concepts with Applications to the - chanics of Materials" took place at the Ruhr-University of Bochum, Germany, on September 22-26, 2008. The symposium was attended by 55 delegates from 10 countries. Altogether 31 lectures were presented. The objective of the symposium was to give an overview of the new dev- opments sketched above, to bring together leading experts in these ?elds, and to provide a forum for discussing recent advances and identifying open problems to work on in the future. The symposium focused on the developmentof new material models as well as the advancement of the corresponding computational techniques. Speci?c emphasis is put on the treatment of materials possessing an inherent - crostructure and thus exhibiting a behavior which fundamentally involves multiple scales. Among the topics addressed at the symposium were: 1. Energy-based modeling of material microstructures via envelopes of n- quasiconvex potentials and applications to plastic behavior and pha- transformations. 
 This volume includes several invited lectures given at the International Workshop "Analysis, Partial Differential Equations and Applications," held at the Mathematical Department of Sapienza University of Rome, on the occasion of the 70th birthday of Vladimir G. Maz'ya, a renowned mathematician and one of the main experts in the field of pure and applied analysis. The book aims at spreading the seminal ideas of Maz'ya to a larger audience in faculties of sciences and engineering. In fact, all articles were inspired by previous works of Maz'ya in several frameworks, including classical and contemporary problems connected with boundary and initial value problems for elliptic, hyperbolic and parabolic operators, Schrodinger-type equations, mathematical theory of elasticity, potential theory, capacity, singular integral operators, p-Laplacians, functional analysis, and approximation theory. Maz'ya is author of more than 450 papers and 20 books. In his long career he obtained many astonishing and frequently cited results in the theory of harmonic potentials on non-smooth domains, potential and capacity theories, spaces of functions with bounded variation, maximum principle for higher-order elliptic equations, Sobolev multipliers, approximate approximations, etc. The topics included in this volume will be particularly useful to all researchers who are interested in achieving a deeper understanding of the large expertise of Vladimir Maz'ya." 
 This unique book provides a collection of more than 200 mathematical problems and their detailed solutions, which contain very useful tips and skills in real analysis. Each chapter has an introduction, in which some fundamental definitions and propositions are prepared. This also contains many brief historical comments on some significant mathematical results in real analysis together with useful references.Problems and Solutions in Real Analysis may be used as advanced exercises by undergraduate students during or after courses in calculus and linear algebra. It is also useful for graduate students who are interested in analytic number theory. Readers will also be able to completely grasp a simple and elementary proof of the prime number theorem through several exercises. The book is also suitable for non-experts who wish to understand mathematical analysis. 
 This new approach to real analysis stresses the use of the subject with respect to applications, i.e., how the principles and theory of real analysis can be applied in a variety of settings in subjects ranging from Fourier series and polynomial approximation to discrete dynamical systems and nonlinear optimization. Users will be prepared for more intensive work in each topic through these applications and their accompanying exercises. This book is appropriate for math enthusiasts with a prior knowledge of both calculus and linear algebra. 
 
 Designed for a one-semester advanced calculus course, "Advanced Calculus" explores the theory of calculus and highlights the connections between calculus and real analysis -- providing a mathematically sophisticated introduction to functional analytical concepts. The text is interesting to read and includes many illustrative worked-out examples and instructive exercises, and precise historical notes to aid in further exploration of calculus. Ancillary list: * Companion website, Ebook- http:
//www.elsevierdirect.com/product.jsp?isbn=9780123749550 * Student
Solutions Manual- To come * Instructors Solutions Manual- To
come 
 This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the subject. Most chapters may be covered or omitted, depending upon the background of the student. For example, the text may be used as a primary reference in an introductory course for difference equations which also includes discrete fractional calculus. Chapters 1-2 provide a basic introduction to the delta calculus including fractional calculus on the set of integers. For courses where students already have background in elementary real analysis, Chapters 1-2 may be covered quickly and readers may then skip to Chapters 6-7 which present some basic results in fractional boundary value problems (FBVPs). Chapters 6-7 in conjunction with some of the current literature listed in the Bibliography can provide a basis for a seminar in the current theory of FBVPs. For a two-semester course, Chapters 1-5 may be covered in depth, providing a very thorough introduction to both the discrete fractional calculus as well as the integer-order calculus. 
 Historically, for metric spaces the quest for universal spaces in dimension theory spanned approximately a century of mathematical research. The history breaks naturally into two periods - the classical (separable metric) and the modern (not-necessarily separable metric). The classical theory is now well documented in several books. This monograph is the first book to unify the modern theory from 1960-2007. Like the classical theory, the modern theory fundamentally involves the unit interval. Unique features include: This monograph will be useful to topologists, to mathematicians working in fractal geometry, and to historians of mathematics. Being the first monograph to focus on the connection between generalized fractals and universal spaces in dimension theory, it will be a natural text for graduate seminars or self-study - the interested reader will find many relevant open problems which will create further research into these topics. 
 In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. The constructions are based on far-reaching refinements of the classical Calderon Zygmund decomposition. These new Calderon Zygmund decompositions in turn are produced with the help of new covering theorems that combine many remarkable features of classical results established by Besicovitch, Whitney and Wiener. In many cases the minimizers constructed in the book are stable (i.e., remain near-minimizers) under the action of Calderon Zygmund singular integral operators. The book is divided into two parts. While the new method is presented in great detail in the second part, the first is mainly devoted to the prerequisites needed for a self-contained presentation of the main topic. There we discuss the classical covering results mentioned above, various spectacular applications of the classical Calderon Zygmund decompositions, and the relationship of all this to real interpolation. It also serves as a quick introduction to such important topics as spaces of smooth functions or singular integrals." 
 
 This text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs. It is organized in a distinctive, flexible way that would make it equally appropriate to undergraduate mathematics majors who want to continue in mathematics, and to future mathematics teachers who want to understand the theory behind calculus. The Real Numbers and Real Analysis will serve as an excellent one-semester text for undergraduates majoring in mathematics, and for students in mathematics education who want a thorough understanding of the theory behind the real number system and calculus. 
 The purpose of this book is to present modern developments and applications of the techniques of modulus or extremal length of path families in the study of m- n pings in R, n? 2, and in metric spaces. The modulus method was initiated by Lars Ahlfors and Arne Beurling to study conformal mappings. Later this method was extended and enhanced by several other authors. The techniques are geom- ric and have turned out to be an indispensable tool in the study of quasiconformal and quasiregular mappings as well as their generalizations. The book is based on rather recent research papers and extends the modulus method beyond the classical applications of the modulus techniques presented in many monographs. Helsinki O. Martio Donetsk V. Ryazanov Haifa U. Srebro Holon E. Yakubov 2007 Contents 1 Introduction and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Moduli and Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 2 Moduli in Metric Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 3 Conformal Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 4 Geometric De nition for Quasiconformality . . . . . . . . . . . . . . . . . . . . 13 2. 5 Modulus Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2. 6 Upper Gradients and ACC Functions . . . . . . . . . . . . . . . . . . . . . . . . . 17 p n 2. 7 ACC Functions in R and Capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 p 2. 8 Linear Dilatation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2. 9 Analytic De nition for Quasiconformality. . . . . . . . . . . . . . . . . . . . . . 31 n 2. 10 R as a Loewner Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2. 11 Quasisymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Moduli and Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3. 2 QED Exceptional Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3. 3 QED Domains and Their Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3. 4 UniformandQuasicircleDomains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 One of the main aims of this book is to exhibit some fruitful links between renewal theory and regular variation of functions. Applications of renewal processes play a key role in actuarial and financial mathematics as well as in engineering, operations research and other fields of applied mathematics. On the other hand, regular variation of functions is a property that features prominently in many fields of mathematics. The structure of the book reflects the historical development of the authors' research work and approach - first some applications are discussed, after which a basic theory is created, and finally further applications are provided. The authors present a generalized and unified approach to the asymptotic behavior of renewal processes, involving cases of dependent inter-arrival times. This method works for other important functionals as well, such as first and last exit times or sojourn times (also under dependencies), and it can be used to solve several other problems. For example, various applications in function analysis concerning Abelian and Tauberian theorems can be studied as well as those in studies of the asymptotic behavior of solutions of stochastic differential equations. The classes of functions that are investigated and used in a probabilistic context extend the well-known Karamata theory of regularly varying functions and thus are also of interest in the theory of functions. The book provides a rigorous treatment of the subject and may serve as an introduction to the field. It is aimed at researchers and students working in probability, the theory of stochastic processes, operations research, mathematical statistics, the theory of functions, analytic number theory and complex analysis, as well as economists with a mathematical background. Readers should have completed introductory courses in analysis and probability theory. 
 This text gives a rigorous treatment of the foundations of calculus. In contrast to more traditional approaches, infinite sequences and series are placed at the forefront. The approach taken has not only the merit of simplicity, but students are well placed to understand and appreciate more sophisticated concepts in advanced mathematics. The authors mitigate potential difficulties in mastering the material by motivating definitions, results and proofs. Simple examples are provided to illustrate new material and exercises are included at the end of most sections. Noteworthy topics include: an extensive discussion of convergence tests for infinite series, Wallis's formula and Stirling's formula, proofs of the irrationality of and e and a treatment of Newton's method as a special instance of finding fixed points of iterated functions. 
 Sobolev spaces play an outstanding role in modern analysis, in particular, in the theory of partial differential equations and its applications in mathematical physics. They form an indispensable tool in approximation theory, spectral theory, differential geometry etc. The theory of these spaces is of interest in itself being a beautiful domain of mathematics. The present volume includes basics on Sobolev spaces, approximation and extension theorems, embedding and compactness theorems, their relations with isoperimetric and isocapacitary inequalities, capacities with applications to spectral theory of elliptic differential operators as well as pointwise inequalities for derivatives. The selection of topics is mainly influenced by the author's involvement in their study, a considerable part of the text is a report on his work in the field. Part of this volume first appeared in German as three booklets of Teubner-Texte zur Mathematik (1979, 1980). In the Springer volume "Sobolev Spaces", published in English in 1985, the material was expanded and revised. The present 2nd edition is enhanced by many recent results and it includes new applications to linear and nonlinear partial differential equations. New historical comments, five new chapters and a significantly augmented list of references aim to create a broader and modern view of the area. 
 This book offers a first course in analysis for scientists and engineers. It can be used at the advanced undergraduate level or as part of the curriculum in a graduate program. The book is built around metric spaces. In the first three chapters, the authors lay the foundational material and cover the all-important "four-C's": convergence, completeness, compactness, and continuity. In subsequent chapters, the basic tools of analysis are used to give brief introductions to differential and integral equations, convex analysis, and measure theory. The treatment is modern and aesthetically pleasing. It lays the groundwork for the needs of classical fields as well as the important new fields of optimization and probability theory. |     You may like...
	
	
	
		
			
			
				Modern Mathematical Tools and Techniques…
			
		
	
	 
		
			Leandro Pardo, Narayanaswamy Balakrishnan, …
		
		Hardcover
		
		
			
				
				
				
				
				
				R5,425
				
				Discovery Miles 54 250
			
			
		
	 
	
	
	
		
			
				Advances in Phase Space Analysis of…
			
			
		
	
	 
		
			Antonio Bove, Daniele Del Santo, …
		
		Hardcover
		
		
			
				
				
				
				
				
				R2,685
				
				Discovery Miles 26 850
			
			
		
	 
	
	
	
		
			
			
				A Primer of Real Analytic Functions
			
		
	
	 
		
			Steven G. Krantz, Harold R. Parks
		
		Hardcover
		
		
			
				
				
				
				
				
				R2,543
				
				Discovery Miles 25 430
			
			
		
	 
	
	
	
		
			
				Cauchy's Cours d'analyse - An Annotated…
			
			
		
	
	 
		
			Robert E. Bradley, C. Edward Sandifer
		
		Hardcover
		
		
			
				
				
				
				
				
				R4,769
				
				Discovery Miles 47 690
			
			
		
	 
	
	
	
		
			
			
				Complex Analysis in One Variable
			
		
	
	 
		
			Raghavan Narasimhan, Yves Nievergelt
		
		Hardcover
		
		
			
				
				
				
				
				
				R2,619
				
				Discovery Miles 26 190
			
			
		
	 
	
	
	
		
			
			
				Handbook of Generalized Convexity and…
			
		
	
	 
		
			Nicolas Hadjisavvas, Sandor Komlosi, …
		
		Hardcover
		
		
			
				
				
				
				
				
				R5,519
				
				Discovery Miles 55 190
			
			
		
	 
 |