In this book, three authors introduce readers to strong
approximation methods, analytic pro-p groups and zeta functions of
groups. Each chapter illustrates connections between infinite group
theory, number theory and Lie theory. The first introduces the
theory of compact p-adic Lie groups. The second explains how
methods from linear algebraic groups can be utilised to study the
finite images of linear groups. The final chapter provides an
overview of zeta functions associated to groups and rings. Derived
from an LMS/EPSRC Short Course for graduate students, this book
provides a concise introduction to a very active research area and
assumes less prior knowledge than existing monographs or original
research articles. Accessible to beginning graduate students in
group theory, it will also appeal to researchers interested in
infinite group theory and its interface with Lie theory and number
theory.
General
Is the information for this product incomplete, wrong or inappropriate?
Let us know about it.
Does this product have an incorrect or missing image?
Send us a new image.
Is this product missing categories?
Add more categories.
Review This Product
No reviews yet - be the first to create one!