"Hilbert Transform Applications in Mechanical Vibration" addresses
recent advances in theory and applications of the Hilbert transform
to vibration engineering, enabling laboratory dynamic tests to be
performed more rapidly and accurately. The author integrates
important pioneering developments in signal processing and
mathematical models with typical properties of mechanical dynamic
constructions such as resonance, nonlinear stiffness and damping. A
comprehensive account of the main applications is provided,
covering dynamic testing and the extraction of the modal parameters
of nonlinear vibration systems, including the initial elastic and
damping force characteristics. This unique merger of technical
properties and digital signal processing allows the instant
solution of a variety of engineering problems and the in-depth
exploration of the physics of vibration by analysis, identification
and simulation.
This book will appeal to both professionals and students working
in mechanical, aerospace, and civil engineering, as well as naval
architecture, biomechanics, robotics, and mechatronics.
"Hilbert Transform Applications in Mechanical Vibration" employs
modern applications of the Hilbert transform time domain methods
including: The Hilbert Vibration Decomposition method for adaptive
separation of a multi-component non-stationary vibration signal
into simple quasi-harmonic components; this method is characterized
by high frequency resolution, which provides a comprehensive
account of the case of amplitude and frequency modulated vibration
analysis.The FREEVIB and FORCEVIB main applications, covering
dynamic testing and extraction of the modal parameters of nonlinear
vibration systems including the initial elastic and damping force
characteristics under free and forced vibration regimes.
Identification methods contribute to efficient and accurate testing
of vibration systems, avoiding effort-consuming measurement and
analysis.Precise identification of nonlinear and asymmetric systems
considering high frequency harmonics on the base of the congruent
envelope and congruent frequency.Accompanied by a website at
www.wiley.com/go/feldman, housing MATLAB(R)/ SIMULINK codes.
General
Is the information for this product incomplete, wrong or inappropriate?
Let us know about it.
Does this product have an incorrect or missing image?
Send us a new image.
Is this product missing categories?
Add more categories.
Review This Product
No reviews yet - be the first to create one!