![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials
Closing the Gap is an accessible overview of the fourth industrial revolution (4IR) and the impact it is set to have on various sectors in South Africa and Africa. It explores the previous industrial revolutions that have led up to this point and outlines South Africa’s position been through each one. With a focus on artificial intelligence as a core concept in understanding the 4IR, this book uses familiar concepts to explain artificial intelligence, how it works and how it can be used in banking, mining, medicine and many other fields. Written from an African perspective, Closing the Gap addresses the challenges and fears around the 4IR by pointing to the opportunities presented by new technologies and outlining some of the challenges and successes to date
Develop a thorough understanding of the mechanics of materials - an essential area in mechanical, civil, and structural engineering -- with the analytical approach and problem-solving emphasis in the market-leading MECHANICS OF MATERIALS, 9E. This book focuses on the analysis and design of structural members subjected to tension, compression, torsion, bending, and more. Photographs and detailed diagrams demonstrate reactive and internal forces and resulting deformations.
Completely revised and updated, A Guide to Human Factors and Ergonomics, Second Edition presents a comprehensive introduction to the field. Building on the foundation of the first edition, titled Guide to Ergonomics of Manufacturing, the new title reflects the expanded range of coverage and applicability of the techniques you will find in the second edition. Each and every chapter contains new material and some have been entirely rewritten. Drawing on the author’s experience in both teaching and industry, the book lays to rest the common myths and misconceptions that surround ergonomics.
Reflecting changes in the current health and safety landscape, Occupational Health and Safety Management: A Practical Approach, Third Edition includes examples and tools to facilitate development and implementation of a safety and health management approach. This how-to book is not just an information providing text. It shows you how to write a program and identify hazards as well as involve workers and attain their cooperation. It emphasizes the need for better and more effective communication regarding safety and health. What’s New in the Third Edition:
A complete and practical guide for the development and management of occupational safety and health programs in any industry setting, the book supplies a management blueprint that can be used for occupational safety and health in any organization, from the smallest to the largest, beginning to develop or wanting to improve its safety and health approach. It includes comprehensive guidelines for development of occupational health and safety programs to a variety of industries and is especially useful for start-up companies. The author takes a total management approach to the development of written programs, the identification of hazards, the mitigation of hazards by the use of common safety and health tools, the development of a safe workforce through communications, motivational techniques, involvement, and training. He addresses the tracking and acceptable risk from both safety and health hazards. He also discusses how to work with and within the OSHA compliance approach as well as how to deal with the OSHA regulations, workers’ compensation, terrorism, and Lean safety. As you understand and apply the guidelines in each chapter, you can put your company on the way toward building a successful and effective safety and health effort for its employers and employees.
Advances in Structural Adhesive Bonding, Second Edition reviews developments in adhesive bonding for a range of advanced structural engineering applications. This new edition has been fully revised to include the latest advances in materials, testing and modeling methods, lifecycle considerations, and industrial implementation. Sections review advances in commonly used groups of structural adhesives, covering epoxy, acrylic, anaerobic and cyanoacrylate, polyurethane, and silicone adhesives, along with toughening. Other chapters cover various types of adherends and pre-treatment methods for structural materials, including metals, plastics, composites, wood and joint design and testing, including topics such as fracture mechanics, life prediction techniques, and advanced testing methods. This is a valuable guide for all those working with structural adhesives, including those in an industrial setting, adhesive specialists, structural engineers, design engineers, R&D professionals, and scientists, as well as academic researchers and advanced students in adhesives, joining technology, materials science and mechanical engineering.
Material Modeling with the Visco-Plastic Self-Consistent (VPSC) Approach: Theory and Practical Applications provides readers with knowledge of material viscoplasticity and robust modeling approaches for predicting plastic deformation of crystal aggregates. Visco-Plastic Self-Consistent (VPSC) is the identifier of a computer code developed for the specific mechanical regime addressed (visco-plastic: VP) and the approach used (self-consistent: SC) meant to simulate large plastic deformation of aggregates, thermo-elastic material deformation, as well as predict stress-strain response, texture evolution of aggregates and stress-strain state inside grains. This approach is very versatile and able to tackle arbitrary material symmetry (cubic, hexagonal, trigonal, orthorhombic, triclinic), twinning, and multiphase aggregates. It accounts for hardening, reorientation and shape change of individual grains, and can be applied to the deformation of metals, inter-metallics and geologic aggregates. Readers will have access to a companion website where they can download code and modify its input/output or add subroutines covering specific simulation research needs.
Nanofluid Applications for Advanced Thermal Solutions brings together expert, global contributions, providing a comprehensive understanding of the heat transfer application of nanofluids in a variety of fields, while also explaining the main techniques used in nanofluid flow and heat transfer analysis. The book features basic information describing an introduction to heat transfer, nanofluid conduction, convection and nanofluid boiling for readers who may not have a thorough understanding of a variety of applications, including the energy storage component of solar PVT systems. It covers fundamental topics such as the analysis and measurement of thermophysical properties, convection, and heat transfer equipment performance. Other sections explore convective instabilities, nanofluids in porous media, and entropy generation in nanofluids. This book will be useful to upper undergraduate, postgraduate and doctoral students and researchers in the fields of nanotechnology and nanofluids looking at heat transfer processes in chemical engineering and the petroleum industry.
Encyclopedia of Nanomaterials, Three Volume Set provides a comprehensive reference work on the creation, characterization, property and processing of nanomaterials. Sections cover the synthesis, functionalization, assembly and characterization of nanomaterials, their chemical, physical and biological properties, their processing in the form of coating, special texture and surface patterns, nanodevice fabrication, large-scale manufacturing, and their health and environmental impacts. Focusing on the fundamental concepts of nanomaterials and the key processes to understand, manipulate, and process them, this reference gives readers the ability to design and produce nanomaterials according to the requirements of their specific applications. Further, this encyclopedia includes sections that specifically discuss the large-scale manufacture of nanomaterials and the possible environmental and health impacts of their widespread use in many practical settings. It is written for graduate students and researchers in various fields, including biomedicine, pharmaceutical industry, energy, environmental science, catalysis, etc.
Comprehensive Structural Integrity, Second Edition, a Ten Volume Set, provides material scientists and engineers with an authoritative and complete one-stop reference tool on all aspects of this exciting field. The book puts special emphasis on the interaction between mechanics and materials and structural integrity applications. Because of the interdisciplinary and applied nature of the work, it is an indispensable resource for mechanical engineers and materials scientists from both academic and industrial backgrounds, including bioengineering, interface engineering and nanotechnology. Structural Integrity is the ability of a component, structure or asset to operate properly under the pressure of a load, including the weight of the asset itself. It's a vital consideration for structural engineering: essentially the science and technology which can prevent disaster.
Microfluidics: Modeling, Mechanics and Mathematics, Second Edition provides a practical, lab-based approach to nano- and microfluidics, including a wealth of practical techniques, protocols and experiments ready to be put into practice in both research and industrial settings. This practical approach is ideally suited to researchers and R&D staff in industry. Additionally, the interdisciplinary approach to the science of nano- and microfluidics enables readers from a range of different academic disciplines to broaden their understanding. Alongside traditional fluid/transport topics, the book contains a wealth of coverage of materials and manufacturing techniques, chemical modification/surface functionalization, biochemical analysis, and the biosensors involved. This fully updated new edition also includes new sections on viscous flows and centrifugal microfluidics, expanding the types of platforms covered to include centrifugal, capillary and electro kinetic platforms.
Handbook of Thermoset Plastics, Fourth Edition provides complete coverage of the chemical processes, manufacturing techniques and design properties of each polymer, along with its applications. This new edition has been expanded to include the latest developments in the field, with new chapters on radiation curing, biological adhesives, vitrimers, and 3D printing. This detailed handbook considers the practical implications of using thermoset plastics and the relationships between processing, properties and applications, as well as analyzing the strengths and weakness of different methods and applications. The aim of the book is to help the reader to make the right decision and take the correct action on the basis of informed analysis - avoiding the pitfalls the authors' experience has uncovered. In industry, the book supports engineers, scientists, manufacturers and R&D professionals working with plastics. The information included will also be of interest to researchers and advanced students in plastics engineering, polymer chemistry, adhesives and coatings.
Encyclopedia of Smart Materials, Five Volume Set covers materials that have one or more property that can be significantly changed in a controlled fashion by external stimuli, such as stress, temperature, moisture or pH. Whereas smart structures have the attributes of adaptability, flexibility, and even 'intelligence', the active materials are the enabling factors that make smart composite structures possible. This new Major Reference Work on smart materials provides a full and comprehensive source of information for both researchers and practitioners on the fundamental and recent developments in the fields of design, development, manufacturing and application of smart materials.
This textbook is written specifically for those studying and working in an engineering discipline. It will be an invaluable tool for the existing or aspirant engineer and engineering manager. The text introduces the reader to management and related issues (for example law and economics), which are essential when dealing with customers, suppliers, contractors, accountants, lawyers, economists and managers, either inside or outside an organisation.
Encyclopedia of Materials: Composites, Three Volume Set provides a point-of-entry, foundational-level resource for all scientists and practitioners interested in this exciting field. All composite materials technologies, processes and applications are covered, with contributions written and expertly curated by the world's leading scientists. The result is a three-volume, comprehensive collection of the most important data, concepts and studies published in the field. This title is clearly structured in thematic sections, making it an invaluable tool for researchers in the fields of materials science, energy, engineering, chemistry and physics, and from both industry and academia.
Plants are vulnerable to pathogens including fungi, bacteria, and viruses, which cause critical problems and deficits. Crop protection by plant breeding delivers a promising solution with no obvious effect on human health or the local ecosystem. Crop improvement has been the most powerful approach for producing unique crop cultivars since domestication occurred, making possible the main innovations in feeding the globe and community development. Genome editing is one of the genetic devices that can be implemented, and disease resistance is frequently cited as the most encouraging application of CRISPR/Cas9 technology in agriculture. Nanobiotechnology has harnessed the power of genome editing to develop agricultural crops. Nanosized DNA or RNA nanotechnology approaches could contribute to raising the stability and performance of CRISPR guide RNAs. This book brings together the latest research in these areas. CRISPR and RNAi Systems: Nanobiotechnology Approaches to Plant Breeding and Protection presents a complete understanding of the RNAi and CRISPR/Cas9 techniques for controlling mycotoxins, fighting plant nematodes, and detecting plant pathogens. CRISPR/Cas genome editing enables efficient targeted modification in most crops, thus promising to accelerate crop improvement. CRISPR/Cas9 can be used for management of plant insects, and various plant pathogens. The book is an important reference source for both plant scientists and environmental scientists who want to understand how nano biotechnologically based approaches are being used to create more efficient plant protection and plant breeding systems.
Surface Metrology for Micro- and Nanofabrication presents state-of-the-art measurement technologies for surface metrology in fabrication of micro- and nanodevices or components. This includes the newest general-purpose scanning probe microscopes, and both contact and non-contact surface profilers. In addition, the book outlines characterization and calibration techniques, as well as in-situ, on-machine, and in-process measurements for micro- and nanofabrication.
Critical Materials takes a case-study approach, describing materials supply-chain failures from the bronze age to present day. It looks at why these failures occurred, what the consequences were, and how they were resolved. It identifies key lessons to guide responses to current and anticipated materials shortages at a time when the world's growing middle class is creating unprecedented demand for manufactured products and the increasingly exotic materials that go into them. This book serves as a guide to materials researchers and industrial end-users for finding effective approaches to shortages of specialty materials. The lessons in the book are also appropriate to those who use materials and for those involved in manufacturing supply-chain management and industrial design.
Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments.
Food process engineering, a branch of both food science and chemical engineering, has evolved over the years since its inception and still is a rapidly changing discipline. While traditionally the main objective of food process engineering was preservation and stabilization, the focus today has shifted to enhance health aspects, flavour and taste, nutrition, sustainable production, food security and also to ensure more diversity for the increasing demand of consumers. The food industry is becoming increasingly competitive and dynamic, and strives to develop high quality, freshly prepared food products. To achieve this objective, food manufacturers are today presented with a growing array of new technologies that have the potential to improve, or replace, conventional processing technologies, to deliver higher quality and better consumer targeted food products, which meet many, if not all, of the demands of the modern consumer. These new, or innovative, technologies are in various stages of development, including some still at the R&D stage, and others that have been commercialised as alternatives to conventional processing technologies. Food process engineering comprises a series of unit operations traditionally applied in the food industry. One major component of these operations relates to the application of heat, directly or indirectly, to provide foods free from pathogenic microorganisms, but also to enhance or intensify other processes, such as extraction, separation or modification of components. The last three decades have also witnessed the advent and adaptation of several operations, processes, and techniques aimed at producing high quality foods, with minimum alteration of sensory and nutritive properties. Some of these innovative technologies have significantly reduced the thermal component in food processing, offering alternative nonthermal methods. Food Processing Technologies: A Comprehensive Review, Three Volume Set covers the latest advances in innovative and nonthermal processing, such as high pressure, pulsed electric fields, radiofrequency, high intensity pulsed light, ultrasound, irradiation and new hurdle technology. Each section will have an introductory article covering the basic principles and applications of each technology, and in-depth articles covering the currently available equipment (and/or the current state of development), food quality and safety, application to various sectors, food laws and regulations, consumer acceptance, advancements and future scope. It will also contain case studies and examples to illustrate state-of-the-art applications. Each section will serve as an excellent reference to food industry professionals involved in the processing of a wide range of food categories, e.g., meat, seafood, beverage, dairy, eggs, fruits and vegetable products, spices, herbs among others.
3D and 4D Printing of Polymer Nanocomposite Materials: Processing, Applications, and Challenges covers advanced 3D and 4D printing processes and the latest developments in novel polymer-based printing materials, thus enabling the reader to understand and benefit from the advantages of this groundbreaking technology. The book presents processes, materials selection, and printability issues, along with sections on the preparation of polymer composite materials for 3D and 4D printing. Across the book, advanced printing techniques are covered and discussed thoroughly, including fused deposition modeling (FDM), selective laser sintering (SLS), selective laser melting (SLM), electron beam melting (EBM), inkjet 3D printing (3DP), stereolithography (SLA), and 3D plotting. Finally, major applications areas are discussed, including electronic, aerospace, construction and biomedical applications, with detailed information on the design, fabrication and processing methods required in each case.
Bioinspired Design of Materials Surfaces reviews novel methods and technologies used to design surfaces and materials for smart material and device applications. The author discusses how materials wettability can be impacted by the fabrication of micro- and nanostructures, anisotropic structures, gradient structures, and heterogeneous patterned structures on the surfaces of materials. The design of these structures was inspired by nature, including lotus, cactus, beetle back and butterfly wings, spider silk, and shells. The author reviews the various wettability functions that can result from these designs, such as self-cleaning, directional adhesion, droplet driving, anti-adhesion, non-wetting, liquid repellent properties, liquid separation, liquid splitting, and more. This book presents a key reference on how to fabricate bioinspired structures on materials for desired functions of materials wettability. It also discusses challenges, opportunities and many potential applications, such as oil-water separation devices, water harvesting devices and photonic device applications.
Definitions of Biomaterials for the Twenty-First Century is a review of key, critical biomaterial terms and definitions endorsed by the International Union of Societies for Biomaterials Science and Engineering. The topics and definitions discussed include those in general biomaterials and applications, biocompatibility, implantable and interventional devices, drug delivery systems, regenerative medicine and emerging biomaterials. The book reviews the discussion of these terms by leaders in the global biomaterials community and summarizes the agreed upon definitions.
Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques, Volume Eleven, part of the Developments in Surface Contamination and Cleaning series, provides a guide to recent advances in the application of cleaning techniques for the removal of surface contamination in various industries, such as aerospace, automotive, biomedical, defense, energy, manufacturing, microelectronics, optics and xerography. The material in this new edition compiles cleaning applications into one easy reference that has been fully updated to incorporate new applications and techniques. Taken as a whole, the series forms a unique reference for professionals and academics working in the area of surface contamination and cleaning.
Mechatronic Components: Roadmap to Design explains the practical application of mechatronics, including sections on adaptive structures, robotics and other areas where mechanics and electronics converge. Professional engineers in a variety of areas will find this textbook to be extremely helpful with its in-depth use of flow diagrams and schemes that help readers understand the logic behind the design of such systems. Using approximately 130 different components with diagrams and flowcharts that help engineers from different fields understand the general properties and selection criteria of a component, this book presents a comprehensive resource on mechatronic components.
Electrospinning: Nanofabrication and Applications presents an overview of the electrospinning technique, nanofabrication strategies and potential applications. The book begins with an introduction to the fundamentals of electrospinning, discussing fundamental principles of the electrospinning process, controlling parameters, materials and structures. Nanofabrication strategies, including coaxial electrospinning, multi-needle electrospinning, needleless electrospinning, electro-netting, near-field electrospinning, and three-dimensional macrostructure assembling are also covered. Final sections explore the applications of electrospun nanofibers in different fields and future prospects. This is a valuable reference for engineers and materials scientist working with fibrous materials and textiles, as well as researchers in the areas of nanotechnology, electrospinning, nanofibers and textiles. |
You may like...
Stance and Voice in Written Academic…
K Hyland, C Sancho Guinda
Hardcover
R2,884
Discovery Miles 28 840
Contemporary Composition Studies - A…
Edith Babin, Kimberly Harrison
Hardcover
R2,296
Discovery Miles 22 960
New Trends in Applied Harmonic Analysis…
Akram Aldroubi, Carlos Cabrelli, …
Hardcover
R1,839
Discovery Miles 18 390
Stylboek - Riglyne Vir Paslik Skryf
Piet du Toit, Wanda Smith
Paperback
(2)R708 Discovery Miles 7 080
System-on-Chip Methodologies & Design…
Peter J Ashenden, Jean Mermet, …
Hardcover
R4,199
Discovery Miles 41 990
|