![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials
Sustainable Strategies in Organic Electronics reviews green materials and devices, sustainable processes in electronics, and the reuse, recycling and degradation of devices. Topics addressed include large-scale synthesis and fabrication of safe device materials processes that neither use toxic reagents, solvents or produce toxic by-products. Emerging opportunities such as new synthetic approaches for enabling the commercialization of pi-conjugated polymer-based devices are explored, along with new efforts towards incorporating materials from renewable resources for a low carbon footprint. Finally, the book discusses the latest advances towards device biodegradability and recycling. It is suitable for materials scientists and engineers, chemists, physicists in academia and industry.
Hybrid Nanomaterials for Drug Delivery covers a broad range of hybrid nanomaterials and nanocomposites used in drug delivery systems. The book reviews a variety of hybrid nanomaterials and structures, including polymer-lipid, chitosan-based, protein-inorganic, quantum dot hybrids, and more. The strengths, limitations and regulatory aspects of hybrid drug delivery systems are also discussed, allowing readers to make informed decisions when choosing to utilize hybrid nanomaterials. Users will find this to be an exciting and comprehensive look into this emerging area. It will be of particular interest to academics and researchers working in materials science, engineering, biomedical engineering, nanotechnology and pharmaceutical science. Multi nanocarrier-based hybrid systems are an emerging concept in the field of drug delivery that allow researchers to avoid some of the challenges faced when administering drugs, such as low bioavailability, development of drug resistance, toxicities, premature drug release, and therapeutic efficacy.
High Plasticity Magnesium Alloys focuses on the microstructure, mechanical properties and processing methods of magnesium alloy materials. The title offers theory and methods on high-plasticity magnesium alloys, including phase diagram construction, alloying and deformation. Four typical high-plasticity magnesium alloys are discussed through thermodynamic phase diagram construction and the characterization of their microstructure, mechanical properties and texture at as-cast, extruded, rolled and heat-treated states. Chapters update principle calculations for the effects of alloying elements, Mg-Gd-Zr medium strength and high-plasticity alloys, medium strength and high-plasticity Mg-Mn based alloys, medium strength and high-plasticity Mc-Sn based alloys, and Mg-Gd-Y-Zn-Mn high-strength and high-plasticity magnesium alloys. This book presents the plasticity of magnesium alloys, and guides the design and development of new high-strength and high-plasticity magnesium alloys. It provides detailed solutions for practicing industrial engineers.
Liquid Crystal Polymer Nanocomposites summarizes, in a comprehensive manner, numerous modern technical research accomplishments on the development of nanocomposites from liquid crystalline polymers. It emphasizes various studies at the nano-scale, including discussions of liquid crystalline block copolymers, liquid crystalline epoxy nanocomposites, barrier property studies of liquid crystalline epoxy and their nanocomposites, liquid crystalline polymer-based microfibrillar and nanofibrillar composites, liquid crystalline polymer/nanoplatelet nanocomposites, liquid-crystalline elastomer/graphene oxide nanocomposites, and thermotropic liquid crystalline polymers. It provides detailed information on methods of preparation, the properties of these materials and a discussion on the structure-properties relationship. With an emphasis on data and experimental results, the book's authors illustrate how the liquid crystal structure can have an impact on the final properties of nanocomposite.
Electrochemical Sensors: From Working Electrodes to Functionalization and Miniaturized Devices provides an overview of the materials, preparation and fabrication methods for biosensor applications. The book introduces the field of electrochemistry and its fundamentals, also providing a practical overview of working electrodes as key components for the implementation of sensors and assays. Features covered include the prompt transfer of electrons, favorable redox behavior, biocompatibility, and inertness in terms of electrode fouling. Special attention is dedicated to analyzing the various working materials systems for electrodes used in electrochemical cells such as gold, carbon, copper, platinum and metal oxides. This book is suitable for academics and practitioners working in the disciplines of materials science and engineering, analytical chemistry and biomedical engineering.
Titanium Alloys for Biomedical Development and Applications: Design, Microstructure, Properties and Application systematically introduces basic theories and progress in the research of biomedical ss-Ti alloys achieved by researchers from different fields. It focuses on a high-strength and low elastic modulus biomedical ss-Ti alloy (TLM), etc. designed by the authors. The alloy design methods, microstructural characteristics, mechanical properties, surface treatment methods and biocompatibility of the TLM alloy are discussed in detail, along with a concise description of the medical devices made from this alloy and the application examples. This book will appeal to researchers as well as students from different disciplines, including materials science, biology, medicine and engineering fields.
Biomedical Product and Materials Evaluation: Standards and Ethics provides a much-needed overview of the procedures, issues, standards and ethical issues in the early development of biomedical products. The book covers a range of key biomedical products, from 3D printed organs and blood derived products, to stem calls and decellularized tissue products. Each chapter reviews a single product type, associated materials, biomedical applications, proven development strategies, and potential challenges. The core focus of the book is on the standardization and ethical aspects of biomedical product development, with these elements addressed and discussed in chapters dedicated to product evaluation. This is a useful reference for academics, researchers and industry professionals in R&D groups with an interest in biomaterial research and production, as well as those working in the fields of biomedical engineering, biotechnology and toxicology.
Nanoscale Compound Semiconductors and their Optoelectronics Applications provides the basic and fundamental properties of nanoscale compound semiconductors and their role in modern technological products. The book discusses all important properties of this important category of materials such as their optical properties, size-dependent properties, and tunable properties. Key methods are reviewed, including synthesis techniques and characterization strategies. The role of compound semiconductors in the advancement of energy efficient optoelectronics and solar cell devices is also discussed. The book also touches on the photocatalytic property of the materials by doping with graphene oxides--an emerging and new pathway.
Bionanomaterials are identified as a perfect replacement, in the quest for the search of an alternative to toxic conventional nanomaterials for biomedical applications. Bionanomaterials are the nanomaterials, that are fabricated via biomolecules or encapsulate or immobilize a conventional nanomaterial with a biomolecule. The biomolecules extracted from the microbes, plants, agricultural wastes, insects, marine organisms and certain animals are used for the formation of bionanomaterials. These bionanomaterials exhibited low or negligible toxicity towards humans, other organisms and the environment with enhanced biocompatibility, bioavailability and bioreactivity. Thus, the aim of this book is to provide an overview of various bionanomaterials, their synthesis, characterization and their application-oriented properties. The book is divided into two parts - Part 1 discusses about the bionanomaterials of exclusive natural origin, self-assembled bionanomaterials and their environmental application and Part 2 focuses on applications of distinct bionanomaterials in biomedical sciences. The 'Chapter 1 - Bionanomaterials: Definitions, sources, types, properties, market, toxicity and regulations' aims to provide an extensive overview of bionanomaterials, their definitions, sources, types and their properties. In addition, the toxicity of bionanomaterials and their regulations implied in recent times were also discussed. 'Chapter 2 - Nature inspired bionanomaterials' highlights different types of nature-inspired biosynthesized nanomaterials and their green synthesis methods, as well as some of their emerging applications, especially in the fields of nanomedicine, cosmetics, drug delivery, molecular imaging, and catalytic precursors. Further, the chapter also covers different types of bionanomaterials (e.g., viruses, protein cages, and phages) and highlights their unique properties and potential applications. 'Chapter 3 - Culinary spices mediated biogenesis of nanoparticles for cancer and diabetes treatment' deals with bionanomaterials synthesized by using extracts of culinary spices and its vital role in the treatment of distinct types of cancer and diabetes. In 'Chapter 4 - Environment friendly superhydrophobic bioactive nanocoatings', the authors have discussed the basics of exceptional water repellence behaviour and recent developments in the area of bioactive-SHC for various applications. In addition, the current and projected requirements for bioactive-SHC were also addressed. The authors of 'Chapter 5 - Self-assembly of nanobionics: from theory to application' reviewed, discussed, addressed and highlighted the recent advancements in bionics as an interdisciplinary field to understand the bionic materials and particles, that are mainly fabricated via self-assembly approach. In part 2, the 'Chapter 6 - Inorganic bionanomaterials for biomedical applications' provides an overview of inorganic bionanomaterials, its distinct types, synthesis procedures, properties and characteristics, which is essential for desired applications. 'Chapter 7 - Polymer nanomaterials for biomedical applications' is a comprehensive review of various polymer nanocomposite types, and further describes the synthesis, preparation, structure and biomedical application of nanocomposites. In addition, the recent developments in the field of polymer nanocomposites for biomedical applications were also discussed. 'Chapter 8 - Lignin nanoparticles and their biomedical applications' aims in highlighting the current trends in lignin nanoparticle depolymerization approach, focusing on microbial lignin degradation, optimization, and its biomedical applications. The authors of 'Chapter 9 - Polymer-based nanomaterials for targeted drug delivery' addressed the use of polymeric bionanomaterials, including hydrogels, electrospun nanofibrous scaffolds, nanocellulose, and carbohydrate nanocarriers with special emphasis to their material properties, fabrication technologies and applicability in specific targeted anatomical sites. Moreover, 'Chapter 10 - Cationic nanoparticles for treatment of neurological diseases' discusses about brain disorders, the role of nutraceuticals, mechanisms, delivery challenges, as well as formulation techniques and prospects of cationic nanoparticles in the therapeutic management of neuronal disorders, i.e., brain as site of drug target. Besides, 'Chapter 11 - Carbon nanomaterials for therapeutic applications' has highlighted the cutting-edge properties, mechanism of action, and advancements of carbon nanomaterials as drug delivery system in various diseases, such as cancer and inflammatory disorders. Further, the chapter also sheds light on the potential challenges, limitations, and future outlook for improving and growing carbon-based bionanomaterials. The final chapter 'Chapter 12 - Liposomal bionanomaterials for nucleic acid delivery' is a brief summary of various nucleic acid-based cationic liposomes as a potential bionanomaterial and its recent progress in the application of therapeutic nucleic acid delivery. We hope that this book will enlighten undergraduates, graduates, and industrial as well as academic researchers on the synthesis, characterization and property-oriented applications of certain exclusive bionanomaterials.
There is a growing need for better membranes in several emerging application fields especially those related to energy conversion and storage as well as to water treatment and recycling. Processability, is an important functional property, often ignored, especially in the early discovery phase for new materials, but it should be one of the most important properties, that needs to be considered in the development of better membrane materials. Useful membrane materials have to be capable of being formed into thin membranes, in particular for membrane gas separation, water treatment and desalination, and then packaged, into large area membrane modules. All gas separation membranes that are in current commercial use are based on polymers, which are solution-processable. This book intends to deal with composite, in most cases hybrid polymer-based membranes for three separate application fields: energy conversion, energy storage and water treatment and recovery. Each chapter will explain clearly the various membrane processes then go on to discuss in detail the corresponding advanced membranes used. The logic that lies behind this is that you have to understand the process in order to develop new high-performance membranes. By taking this approach, the author aims to overcome the disconnection that currently exists between membrane materials scientists and industrial process engineers.
Nanomaterials for Electrocatalysis provides an overview of the different types of nanomaterials, design principles and synthesis protocols used for electrocatalytic reactions. The book is divided into four parts that thoroughly describe basic principles and fundamental of electrocatalysis, different types of nanomaterials used, and their electrocatalytic applications, limitations and future perspectives. As electrochemical systems containing nanomaterials, with relevance to experimental situation, yield better results, this book highlights new information and findings.
Hybrid Nanofluids: Preparation, Characterization and Applications presents the history of hybrid nanofluids, preparation techniques, thermoelectrical properties, rheological behaviors, optical properties, theoretical modeling and correlations, and the effect of all these factors on potential applications, such as solar energy, electronics cooling, heat exchangers, machining, and refrigeration. Future challenges and future work scope have also been included. The information from this book enables readers to discover novel techniques, resolve existing research limitations, and create novel hybrid nanofluids which can be implemented for heat transfer applications.
Mechanics and Physics of Structured Media: Asymptotic and Integral Methods of Leonid Filshtinsky provides unique information on the macroscopic properties of various composite materials and the mathematical techniques key to understanding their physical behaviors. The book is centered around the arguably monumental work of Leonid Filshtinsky. His last works provide insight on fracture in electromagnetic-elastic systems alongside approaches for solving problems in mechanics of solid materials. Asymptotic methods, the method of complex potentials, wave mechanics, viscosity of suspensions, conductivity, vibration and buckling of functionally graded plates, and critical phenomena in various random systems are all covered at length. Other sections cover boundary value problems in fracture mechanics, two-phase model methods for heterogeneous nanomaterials, and the propagation of acoustic, electromagnetic, and elastic waves in a one-dimensional periodic two-component material.
Micro- and Nanoengineered Gum-Based Biomaterials for Drug Delivery and Biomedical Applications focuses on micro- and nanotechnology in gums and biopolymers as drug and biomolecule carriers and their applications in biomedicine. Currently, natural gums and polymers are widely utilized as biocarrier systems, to deliver drugs and biomolecules to the target site, for prolonged release and the desired therapeutic effect. Natural gums and polymers are important because they are easily available from natural sources and are characteristically biodegradable, biocompatible, and nontoxic. Natural gums and polymers are also chemically modified with other polymers, in the presence of cross-linking agents, to develop scaffolds, matrices, composites, and interpenetrating polymer networks using micro- and nanotechnology. The book also discusses biological applications, such as gene delivery, cancer therapy, tissue engineering, bioimaging, and theranostics. This book is an important reference source for biomaterials scientists, biomedical engineers, and pharmaceutical scientists, who are looking to increase their understanding of how micro- and nanoengineered biomaterials are being used to create more efficient gum-based drug delivery systems.
This third volume of the new ASME Press Book Series on Renewable Energy also edited by Dr. Rao and published by ASME Press is based on updated chapters from the classic 2011 Handbook of Energy and Power Generation in addition to a new chapter appropriate for the title of this book. The discussions in this book update Wind Energy since the publication of 2011 Handbook by Dr. Rao in Chapters 1, 2, 3 and 4. Since the coverage in the 2011 Handbook is considered applicable even for the present it is retained in total with the contributions for original authors for Chapters 1, 2, 3 and 4 an update for Chapter 6, 7, 8 and 9 of the 2011 Handbook. Chapter 1 covers "NASA Developments and Potential"; Chapter 2 addresses "Scope of Wind Energy Generation Technologies since 2011"; and Chapter 3 "Scope of Wind Energy in the US since 2011; and Chapter 4 "Wind Energy in the Netherlands Since 2011". Chapter 5, an update of Chapter 10 of the 2011 Handbook is titled as before in the 2011 Handbook, "Role of Wind Energy Technology in India and Neighboring Countries" by original author M.P. Ramesh and finally the last Chapter 6 is a new Chapter "Artificial Intelligence in Wind Energy" by Dr. Weifei Hu. The book contains over 200 pages with 28 tables, 143 figures, 379 footnotes and over 102 additional references in this updated version. The book has an index as before in the original edition, to help users easily navigate through the text and graphics.
Polysaccharide Nanoparticles: Preparation and Biomedical Applications provides detailed information on polysaccharides nanoparticles in terms of their synthesis and applications. Naturally occurring polysaccharides are widely used as food materials, particularly in Asia. Different kinds of polysaccharide materials are available from nature with various resources such as crustaceans and algae. The exploration and exploitation of polysaccharides nanoparticles from natural resource is at the heart of this book, which also explores the synthesis, preparation and applications of polysaccharides nanoparticles for tissue engineering and food applications. This is an important reference for materials scientists and bioengineers who are looking to gain a greater understanding on how polysaccharides nanoparticles are being used for a variety of biomedical applications.
Multiscale Modeling Approaches for Composites outlines the fundamentals of common multiscale modeling techniques and provides detailed guidance for putting them into practice. Various homogenization methods are presented in a simple, didactic manner, with an array of numerical examples. The book starts by covering the theoretical underpinnings of tensors and continuum mechanics concepts, then passes to actual micromechanic techniques for composite media and laminate plates. In the last chapters the book covers advanced topics in homogenization, including Green's tensor, Hashin-Shtrikman bounds, and special types of problems. All chapters feature comprehensive analytical and numerical examples (Python and ABAQUS scripts) to better illustrate the theory.
Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications provides a comprehensive overview of materials, functionalized interfaces, fabrication strategies and application areas. Special attention is given to the remaining challenges and opportunities for commercial realization of functionalized nanomaterial-based electrochemical sensors. An assortment of nanomaterials has been investigated for their incorporation into electrochemical sensors. For example, carbon- based nanomaterials (carbon nanotube, graphene and carbon fiber), noble metals (Au, Ag and Pt), polymers (nafion, polypyrrole) and non-noble metal oxides (Fe2O3, NiO, and Co3O4). The most relevant materials are discussed in the book with an emphasis on their evaluation of their realization in commercial applications. Application areas touched on include the environment, food and medicine industries. Health, safety and regulation considerations are touched on, along with economic and commercialization trends.
Nanocellulose Materials: Fabrication and Industrial Applications focuses on the practices, distribution and applications of cellulose at the nanoscale. The book delivers recent advancements, highlights new perspectives and generic approaches on the rational use of nanocellulose, and includes sustainability advantages over conventional sources towards green and sustainable industrial developments. The topics and sub-topics are framed to cover all key features of cellulose, from extraction to technological evolution. Nanocellulose has great potential due to its versatility and numerous applications, including the potential role of nanocellulose scaffold derivatives towards active involvement in the energy sector, chemical sensing, catalysis, food industry and anti-bacterial coatings towards land, agricultural and aquatic systems.
Sustainable Nanotechnology for Environmental Remediation provides a single-source solution to researchers working in environmental, wastewater management, biological and composite nanomaterials applications. It addresses the potential environmental risks and uncertainties surrounding the use of nanomaterials for environmental remediation, giving an understanding of their impact on ecological receptors in addition to their potential benefits. Users will find comprehensive information on the application of state-of-the-art processes currently available to synthesize advanced green nanocomposite materials and biogenic nanomaterials. Other sections explore a wide range of promising approaches for green nanotechnologies and nanocomposites preparations. Case study chapters connect materials engineering and technology to the social context for a sustainable environment. Applications and different case studies provide solutions to the challenges faced by industry, thus minimizing negative social impacts.
Nanotechnology in Paper and Wood Engineering: Fundamentals, Challenges and Applications describes recent advances made in the use of nanotechnology in the paper and pulp industry. Various types of nano-additives commonly used in the paper industry for modification of raw material to enhance final products are included, with other sections covering the imaging applications of nano-papers and nano-woods in pharmaceuticals, biocatalysis, photocatalysis and energy storage. This book is an important reference source for materials scientists and engineers who are looking to understand how nanotechnology is being used to create more efficient manufacturing processes in for the paper and wood industries.
Nanotechnology in Modern Animal Biotechnology: Concepts and Applications discusses the advancement of nanotechnologies in almost every field, ranging from materials science, to food, forensic, agriculture and life sciences, including biotechnology and medicine. Nanotechnology is already being harnessed to address many of the key problems in animal biotechnology, with future applications covering animal biotechnology (e.g. animal nutrition, health, disease diagnosis, and drug delivery). This book provides the tools, ideas and techniques of nanoscale principles to investigate, understand and transform biological systems. Nanotechnology provides the ability to manipulate materials at atomic and molecular levels and also arrange atom-by-atom on a scale of ~1-100 nm to create, new materials and devices with fundamentally new functions and properties arising due to their small scale.
Von der digitalen und agilen Transformation versprechen sich Organisationen kurzere Innovationszyklen und effiziente Bearbeitung. Modernes, fur die jeweilige Situation massgeschneidertes Projektmanagement ist hierfur unerlsslich. Die vielen verschiedenen Ansatze, Standards und Normen koennen leicht verwirren. Holger Timinger erklart in diesem Buch die traditionellen, agilen und hybriden Vorgehensweisen im Projektmanagement. Diese Vorgehensweisen werden klar voneinander unterscheidbar Situation fur Situation dargestellt. Ausserdem geht der Autor auf die Standards und Normen DIN 69901, ISO 21500, Individual Competence Baseline 4.0 der IPMA, PMI und PRINCE2 ein. So gibt Ihnen dieses Buch einen gut strukturierten Einblick in das moderne Projektmanagement. |
![]() ![]() You may like...
3D and 4D Printing of Polymer…
Kishor Kumar Sadasivuni, Kalim Deshmukh, …
Paperback
R5,761
Discovery Miles 57 610
Free-Surface Flow - Computational…
Nikolaos D. Katopodes
Paperback
Comprehensive Nuclear Materials
Rudy Konings, Roger Stoller
Hardcover
R82,245
Discovery Miles 822 450
Nanofluid Applications for Advanced…
Shriram S. Sonawane, Mohsen Sharifpur
Paperback
R4,065
Discovery Miles 40 650
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,328
Discovery Miles 33 280
Comprehensive Structural Integrity
Ferri M.H. Aliabadi, Winston (Wole) Soboyejo
Hardcover
R103,997
Discovery Miles 1 039 970
|