![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials
Sustainable Polylactide-Based Composites integrates fundamental knowledge pertaining to manufacturing and characterization of polymer composites with a thorough and critical overview of the state-of-the-art in PLA-based composites, including significant past and recent advances. The book begins with insights into the basics of polymer composites, with special reference to sustainable composites, as well as fundamental knowledge related to PLA. This is followed by chapters on manufacturing methods, morphological characterization techniques, and the mechanical models used for polymer composites. A comprehensive overview of the state-of-the-art in PLA-based sustainable composites of all extensively used fillers is then presented. After providing fundamental knowledge related to PLA and polymer composites, including structure-property-processing relationship, the book focuses on recent research efforts and key research challenges in the development of PLA-based composites, as well as lifecycle assessment and recycling.
Nanomaterials for Photodynamic Therapy takes a unique approach to this area, with a key focus on the use of nanomaterials and nanocarriers for photodynamic therapy (PDT). The book introduces the history and mechanism of action behind PDT, covering the variety of sensitizers currently available. Subsequent chapters review existing and emerging nanomaterials for PDT, including hydrogel nanocomposites, fullerenes, quantum dots, polymeric micelles, and more. Challenges and translational aspects of PDT are also discussed, touching on the issues and hindrances of drug resistant cancers. The book bridges the gap between the physics and clinical aspects of PDT, offering a unique nanomaterials-focused perspective. This book will prove useful for materials scientists, biomedical engineers, electrical and optical engineers, and pharmaceutical scientists interested in cancer treatment.
Advances in Heat Transfer, Volume 54 in this comprehensive series, highlights new advances in the field, with this new volume presenting interesting chapter written by an international board of authors. Updates to this new release include chapters on Thermal Convection Studies at the University of Minnesota and Turbulent passive scalar transport in smooth wall-bounded flows: recent advances.
Nanoparticle-Based Polymer Composites discusses recent advancements on the synthesis, processing, characterization and applications of this new class of hybrid materials. Chapters cover recycling and lifecycle assessment, with contributions from leading researchers in industry, academics, the government and private research institutes from across the globe. As nanoparticle-based polymer composites are now replacing traditional polymer composites in a broad range of applications such as fuel cells, electronic and biomedical devices, this book presents the latest advancements in the field. Studies have shown that incorporating metal nanoparticles in polymer matrices can improve their mechanical, thermal, electrical and barrier properties. The unique combination of these properties makes this new class of materials suitable for a broad range of different and advanced applications.
After over two decades of focused research and development, silicon carbide (SiC) is now ready for use in the healthcare sector and Silicon Carbide Technology for Advanced Human Healthcare Applications provides an up-to-date assessment of SiC devices for long-term human use. It explores a plethora of applications that SiC is uniquely positioned for in human healthcare, beginning with the three primary areas of technology which are closest to human trials and thus adoption in the healthcare industry: neural implants and spinal cord repair, graphene and biosensors, and finally deep tissue cancer therapy using SiC nanotechnology. Biomedical-inspired engineers, scientists, and healthcare professionals will find this book to be very useful in two ways: (I) as a guide to new ways to design and develop advanced medical devices and (II) as a reference for new developments in the field. The book's intent is to stimulate ideas for further technological enhancements and breakthroughs, which will provide alternative solutions for human healthcare applications.
Solid State Physics, Volume 73, the latest release in this serial that highlights new advances in the field, presents interesting chapters on a variety of current topics in the field, with each chapter written by an international board of authors.
Principles of Biomaterials Encapsulation: Volume One, provides an expansive and in-depth resource covering the key principles, biomaterials, strategies and techniques for encapsulation. Volume One begins with an introduction to encapsulation, with subsequent chapters dedicated to a broad range of encapsulation principles and techniques, including spray chilling and cooling, microemulsion, polymerization, extrusion, cell microencapsulation and much more. This book methodically details each technique, assessing the advantages and disadvantages of each, allowing the reader to make an informed decision when using encapsulation in their research. Principles of Biomaterials Encapsulation: Volume One enables readers to learn about the various strategies and techniques available for encapsulation of a wide selection of biomedical substrates, such as drugs, cells, hormones, growth factors and so on. Written and edited by well-versed materials scientists with extensive clinical, biomedical and regenerative medicine experience, this book offers a deeply interdisciplinary look at encapsulation in translational medicine. As such, this book will provide a useful resource to a broad readership, including those working in the fields of materials science, biomedical engineering, regenerative and translational medicine, pharmacology, chemical engineering and nutritional science.
Tribology of Polymers, Polymer Composites, and Polymer Nanocomposites combines fundamental knowledge with the latest findings in the area of polymer tribology. From testing of property-related mechanisms to prediction of wear using artificial neural networks, the book explores all relevant polymer types, including elastomers, epoxy-based, nylon, and more while also discussing their different types of reinforcement, such as particulates, short fibers, natural fibers, and beyond. New developments in sustainable materials, environmental effects, nanoscaled fillers, and self-lubrication are each discussed, as are applications of these materials, guidelines for when to use certain polymer systems, and functional groups of polymers. Experimental methods and modeling and prediction techniques are also outlined. The tribology of graphene-based, biodegradable, hybrid nanofiller/polymer nanocomposites and other types of polymers is discussed at length.
Carbon-Based Nanomaterials and Nanocomposites for Gas Sensing discusses the state of the art, emerging challenges, properties, and opportunities of various carbon-based nanomaterials and nanocomposites, for their application in smart gas sensors. The book focuses on various carbon-based nanomaterials and their nanocomposites, sensing mechanism, device fabrication, and their application for the sensing of various hazardous gases. This is important for several industries, environmental monitoring, and human healthcare, due to increased industrialization. Carbon-Based Nanomaterials and Nanocomposites for Gas Sensing provides systematic and effective guidelines for researchers who want to gain a fundamental understanding of how this class of materials is being used for gas sensing. Since these sensors can be applied for the automation of numerous industrial processes, as well as for everyday monitoring of various activities, such as public safety, engine performance, medical therapeutics, and in many other situations, this book will catch the attention of readers and motivate them for advanced research in the development of smart and efficient gas sensors.
Scalar Damage and Healing Mechanics outlines the latest cutting-edge research in the field of scalar damage and healing mechanics, providing step-by-step insight on how to use scalar damage variables in various modeling scenarios. Additionally, the book discusses the latest advances in healing mechanics, covering the evolution of healing and damage, small damage and small healing, healing processes in series and in parallel, super healing, and the thermodynamics of damage and healing. Coupled systems, in which damage triggers self-healing as well as a decoupled system where healing occurs after damage is identified by external detection, are also discussed. Readers are additionally introduced to fundamental concepts such as effective stress, damage evolution, plane stress damage decomposition, and other damage processes that form the basis for a better understanding of the more advanced chapters.
Knowledge is Power in Four Dimensions: Models to Forecast Future Paradigms, Forecasting Energy for Tomorrow's World with Mathematical Modeling and Python Programming Driven Artificial Intelligence delivers knowledge on key infrastructure topics in both AI technology and energy. Sections lay the groundwork for tomorrow's computing functionality, starting with how to build a Business Resilience System (BRS), data warehousing, data management, and fuzzy logic. Subsequent chapters dive into the impact of energy on economic development and the environment and mathematical modeling, including energy forecasting and engineering statistics. Energy examples are included for application and learning opportunities. A final section deliver the most advanced content on artificial intelligence with the integration of machine learning and deep learning as a tool to forecast and make energy predictions. The reference covers many introductory programming tools, such as Python, Scikit, TensorFlow and Kera.
Sodium Alginate-based Nanomaterials for Wastewater Treatment offers detailed coverage of fundamentals and recent advances in sodium alginate-based nanomaterials for wastewater treatment. The book provides a detailed overview of the development and application of nanomaterials-based sodium alginate so that new methods can be put in place for efficient wastewater treatment. This includes illustrating how nanomaterials have enabled the formation of nanocomposites or blends of sodium alginate with other compounds like chitosan for the effective removal of heavy metals from wastewater. This important reference source for materials scientists and environmental engineers comprehensively covers nanotechnology applications in efficient wastewater treatment solutions.
Multi-functional Concrete with Recycled Aggregates consists of chapters covering multiple aspects of sustainable concrete materials, inclusive of engineering, environmental, policy, and management factors. With contributing authors worldwide from a variety of disciplines bridged by the theme of sustainability of concrete, this book aims to provide an overview of existing research and practices of traditional recycled aggregate concrete; introduce the latest studies of high-performance concrete adopting recycled aggregates from C&D wastes; disseminate the latest findings of multifunctional recycled aggregate concrete by achieving the waste reuse while realizing other environmental sustainability goals; and link the multipurpose sustainable concrete technical development into the C&D waste management.
Nanomaterials for Carbon Dioxide Capture and Conversion Technologies focuses on the applications of nanomaterials for CO2 capture and conversion. The book highlights the need for CO2 mitigation, followed by the basic principles for CO2 capture and conversion, using different nanomaterials, while also discussing and highlighting challenges and perspectives. Abundant CO2 emissions from industries and the transportation sector are a threat to the planet due to overwhelming concerns regarding CO2-induced climate change. Nanomaterials are being widely investigated for CO2 capture and conversion processes. Nano absorbents, adsorbents and nanomembranes for CO2 capture, nano catalysts for catalytic CO2 conversion, and chemical fixation of CO2 are some of the broader applications of nanomaterials for CO2 mitigation.
New Trends in Smart Nanostructured Biomaterials in Health Sciences provides guidance on the design and synthesis of nanostructured smart biomaterials, as well as the resultant therapeutic effects and associated biomedical applications of these novel materials. The book provides readers with a deeper understanding of these novel biomaterials and aids them in making informed decisions when selecting appropriate materials for tissue engineering and cancer therapy applications. It will be of specific interest to materials scientists, biomedical engineers, oncological scientists, tissue engineers and those working in regenerative medicine. Nanostructured smart materials have the special ability to respond to changes in the cell microenvironment, allowing for robust, biocompatible and rapidly adaptable, therapeutic and restorative action against a range of ailments. These materials are thus ideal candidates for use in tissue engineering and cancer therapy due to the varying nature of the cell microenvironment between persons, tissues and cancers. This book covers the design, synthesis, unique properties and application of smart biomaterials in these two key topic areas of tissue engineering and cancer therapeutics.
Bio-Based Flame Retardants for Polymeric Materials provides a comprehensive overview of flame retardants derived directly and indirectly from plant sources, drawing on cutting-edge research and covering preparation methods, testing and evaluation techniques, enhanced properties, and end applications. Chapters introduce bio-based materials in the context of additives for flame retardancy, explaining fundamentals and testing methods and analyzing synthetic approaches and the potential advantages of pursuing a bio-based approach. This is followed by detailed coverage of bio-based retardants, with each chapter covering a specific source and guiding the reader systematically through preparation techniques, evaluation methods, properties and applications. Throughout the book, the latest progress in the field is critically reviewed, and there is a continual emphasis on novel approaches to achieve enhanced properties and performant materials. This is an essential guide for all those with an interest in innovative, sustainable flame retardant additives for polymeric materials, including researchers, scientists, advanced students, and more.
Protein-Based Biopolymers: From Source to Biomedical Applications provides an overview on the development and application of protein biopolymers in biomedicine. Protein polymers have garnered increasing focus in the development of biomedical materials, devices and therapeutics due to their intrinsic bioactivity, biocompatibility and biodegradability. This book comprehensively reviews the latest advances on the synthesis, characterization, properties and applications of protein-based biopolymers. Each chapter is dedicated to a single protein class, covering a broad range of proteins including silk, collagen, keratin, fibrin, and more. In addition, the book explores the biomedical potential of these polymers, from tissue engineering, to drug delivery and wound healing. This book offers a valuable resource for academics and researchers in the fields of materials science, biomedical engineering and R&D groups working in pharmaceutical and biomedical industries.
Engineering Reliability and Risk Assessment explains how to improve the performance of a system using the latest risk and reliability models. Against a backdrop of increasing availability of industrial data, and ever-increasing global commercial competition, the standards for optimal efficiency with minimum hazards keep improving. Topics explained include Effective strategies for the maintenance of the mechanical components of a system, How to schedule necessary interventions throughout the product life cycle, How to understand the structure and cost of complex systems, Planning a schedule to improve the reliability and life of the system, software, system safety and risk informed asset management, and more.
Heat is a branch of thermodynamics that occupies a unique position due to its involvement in the field of practice. Being linked to the management, transport and exchange of energy in thermal form, it impacts all aspects of human life and activity. Heat transfers are, by nature, classified as conduction, convection (which inserts conduction into fluid mechanics) and radiation. The importance of these three transfer methods has resulted - justifiably - in a separate volume being afforded to each of them, with the subject of convection split into two volumes. This fourth volume is dedicated to convection, more specifically, the problem of particular convective transfers. Twophase convection is considered and a more recent and much lesser-known field is presented, that of phase change transfer. Particular significance is given to numerical applications, allowing the reader to handle orders of magnitude, an important point in all physics. Heat Transfer 4 combines a basic approach with a deeper understanding of the discipline and will therefore appeal to a wide audience, from technician to engineer, from doctoral student to teacher-researcher.
Synthesis, Characterization and Applications of Graphitic Carbon Nitride: An Uprising Carbonaceous Material offers an up-to-date record on the major findings and observations relating to graphitic carbon nitride-based systems, elaborately covering all the aspects of carbon nitride as chemical stable and pollution-free materials that are easy to prepare in a cost-effective way, along with their applications in photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, sensors and supercapacitors. Graphitic carbon nitride (g-C3N4) is a fascinating visible light photocatalyst, which possesses many properties that can be used for many applications. This makes the book an indispensable reference for (post)-graduate students, researchers in academia and industry, and engineers working in the field of graphitic carbon-nitride-based systems.
Natural Polymers in Wound Healing and Repair: From Basic Concepts to Emerging Trends presents comprehensive coverage on the development and application of natural polymers in wound healing and repair, including fundamental concepts, traditional approaches, cutting-edge methods and emerging trends. The application of natural polymers has evolved from their use in the simplest wound management material, to drug eluting matrices, to cell-laden constructs, and to 3D bio-printed skin equivalents. This book reflects the remarkable progress that has been made in recent years in this innovative field. This is an essential resource for researchers, scientists, and advanced students across polymer science, biomaterials, bio-based and sustainable materials, biomedicine, biomedical engineering, pharmaceuticals, and materials science and engineering. It will also be valuable to R&D professionals, scientists, technologists and all those working in a medical setting who are interested in the latest developments in advanced materials for wound management, healing and repair.
Aptamers Engineered Nanocarriers for Cancer Therapy details the selection technologies, biological characteristics, and clinical uses of aptamer-based nano agents for cancer therapeutics. The book helps facilitate speedy solutions for some of the problems pertaining to the manufacture of nano-aptamers - such as toxicity, thermal stability, cost efficiency, tumor penetration and blood stability. Key chapters cover cell-SELEX technology for aptamer selection, mechanisms of multi-drug resistance of cancer, the relevance of aptamers as anticancer therapies, as well as the broad range of aptamer-functionalized nanostructures available. This book provides exciting insights into this relatively new approach to cancer therapeutics, and will be of interest to materials scientists, biomedical engineers, molecular biologists, biochemists and clinical scientists, with a focus on cancer therapy.
Smart Polymer Nanocomposites: Design, Synthesis, Functionalization, Properties, and Applications brings together the latest research on synthetic methods and surface functionalization of polymers and polymer composites for advanced applications. Sections cover the basic principles of advanced polymer nanocomposites, including morphology, materials, characterization, and copolymerization, provide in-depth coverage of synthetic methods, facilitating the preparation of polymeric nanoparticles with the required properties, examine the morphologies of polymer nanocomposites and stimuli-responsive surfaces, and focus on cutting-edge approaches to tailoring polymeric nanocomposites according to the requirements. The book's final chapters focus on smart polymer nanocomposites for specific advanced applications, including high-temperature environments, bone tissue regeneration, biomedicine, wastewater treatment, dielectric and energy storage, chiral separation, food packaging, sensing, and drug delivery. This is a valuable resource for researchers and advanced students in polymer science, composite science, nanotechnology, and materials science, as well as those approaching the area from a range of other disciplines, including industry R&D.
Nano-Enabled Technologies for Water Remediation highlights several aspects of wastewater treatment using low-dimensional carbon-based materials. The book also focuses on advances in membrane-based separation, specifically on the pressure driven membrane process. In the case of membrane advances, the focus is exclusively on metal and metal oxide, mixed matrix membranes, GO, and CNT loaded membranes for targeted pollutant removal. Further, new and upcoming technologies of membrane preparation, via the electrospinning method, and advances in membrane distillation and wastewater remediation are discussed. In addition, the book includes coverage of recent advances occurring in sustainable technologies for wastewater remediation with bio-active nanomaterials, bio-inspired, and bio-templated nanomaterials which assist readers in gaining a new perspective for implementing nature-mimicked designs for water treatment and conservation.
Biodegradability of Conventional Plastics: Opportunities, Challenges, and Misconceptions brings together innovative research on the biodegradability of conventional plastics, providing an extensive overview of approaches and strategies that may be implemented, while also highlighting other methods for alleviating the eventual environmental impact of plastics. The book begins by providing a lifecycle assessment of plastics, the environmental impact of plastic waste, and the factors that affect the biodegradability of plastics. The different categories and terminologies surrounding bio-based plastics and biodegradable plastics are then defined and explained in detail, as are the issues surrounding bioplastics. Other sections discuss biodegradability, approaches for enhanced biodegradability of various major types of plastics, including polyolefins, polyethylene terephthalate (PET), polystyrene, poly(vinyl chloride), automotive plastics and composites, and agricultural plastic waste. The final part of the book focuses on further techniques and emerging areas, including the utilization of chemical additives, nanomaterials, the role of microbes in terms of microbial degradation and microbial attaching, revalorization of plastic waste through industrial biotechnology, and future opportunities and challenges. |
You may like...
Comprehensive Nuclear Materials
Rudy Konings, Roger Stoller
Hardcover
R78,910
Discovery Miles 789 100
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Fundamental Biomaterials: Polymers
Sabu Thomas, Preetha Balakrishnan, …
Paperback
Nanofluid Applications for Advanced…
Shriram S. Sonawane, Mohsen Sharifpur
Paperback
R3,922
Discovery Miles 39 220
|