![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials
This new edition draws upon the fundamentals of abrasive machining processes and the science of tribology to understand, predict, and improve abrasive machining processes. Each of the main elements of the abrasive machining system is looked at alongside the tribological factors that control the efficiency and quality of the processes described. The new edition has been updated to include a variety of industrial applications. Grinding and conditioning of grinding tools are dealt with in particular detail, and solutions are proposed for many of the most commonly experienced industrial problems, such as poor accuracy, poor surface quality, rapid tool wear, vibrations, workpiece burn, and high process costs. The entire book has been rewritten and restructured, with ten completely new chapters. Other new features include:
Biodegradable Polymers, Blends and Composites provides a comprehensive review on recent developments in this very important research field. The book's chapters cover the various types of biodegradable polymers currently available and their composites, with discussions on preparation, properties and applications. Sections cover natural rubber-based polymer blends, soy-protein, cellulose, chitin, starch-based, PLA, PHBV, PCL, PVA, PBAT-based blends, Poly (ethylene succinate), PHB and Poly (propylene carbonates). The book will be a valuable reference resource for academic and industrial researchers, technologists and engineers working on recent developments in the area of biodegradable polymers, their blends and composites.
Musculoskeletal Tissue Engineering introduces the fundamental concepts and translational applications of musculoskeletal tissue engineering, in combination with emerging technologies and materials. Sections discuss Tissues and Technologies, covering a range of musculoskeletal tissues, including bone, cartilage, ligament and more. Each chapter in this section details core tissue engineering principles specific to each tissue type. Next, a Technologies section looks at the range of biomaterials used in musculoskeletal tissue engineering, focusing on biocompatibility of materials and interactions at the material-tissue interface. Other chapters cover nanotechnology, 3D printing, gene therapy, tissue chips, and more. This book offers an advanced reference text for researchers in biomedical engineering, materials science and regenerative medicine.
Mechanics of Multiscale Hybrid Nanocomposites provides a practical and application-based investigation of both static and dynamic behaviors of multiscale hybrid nanocomposites. The book outlines how to predict the mechanical behavior and material characteristics of these nanocomposites via two-step micromechanical homogenization techniques performed in an energy-based approach that is incorporated with the strain-displacement relations of shear deformable beam, plate and shell theories. The effects of using various nanofillers are detailed, providing readers with the best methods of improving nanocomposite stiffness. Both numerical (Ritz, Rayleigh-Ritz, etc.) and analytical (Navier, Galerkin, etc.) solution methods are outlined, along with examples and techniques.
Nanotechnology for Battery Recycling, Remanufacturing, and Reusing explores how nanotechnology is currently being used in battery recycling, remanufacturing and reusing technologies to make them economically and environmentally feasible. The book shows how nanotechnology can be used to enhance and improve battery recycling, remanufacturing and reusing technologies, covering the fundamentals of battery recycling, remanufacturing and reusing technologies, the role of nanotechnology, the separation, regeneration and reuse of nanomaterials from battery waste, nano-enabled approaches for battery recycling, and nano-enabled approaches for battery remanufacturing and reusing. This book will help researchers and engineers to better understand the role of nanotechnology in the field of battery recycling, remanufacturing and reusing. It will be an important reference source for materials scientists and engineers who would like to learn more about how nanotechnology is being used to create new battery recycling processes.
Nickel-Titanium Smart Hybrid Materials: From Micro- to Nano-structured Alloys for Emerging Applications describes advanced properties that can be adapted in NiTi-alloys. Nickel-Titanium (NiTi) systems are receiving wide demand in growing industries due to their smart, high-temperature or biocompatible behavior. These influenced behaviors are carefully described in the micro-scale and nanoscale range, with NiTi smart materials described on the basis of their shape memory effect (SME) and super-elastic (SE) properties for sensor and actuator application. This book discusses novel properties of nickel-titanium systems, helping materials scientists and engineers produce smart technologies and systems for the aeronautical, automobile, mechanical, healthcare and electronics industries.
PEDOT is currently the most widely used polymeric material in research and development. Over the past 10 years, PEDOT has been investigated for potential organic thermoelectric applications because of its superior thermoelectric and mechanical properties compared with other conductive polymers. However, many challenges remain to be solved before it is translated into key technologies. Advanced PEDOT Thermoelectric Materials summarizes current progress and the challenges of PEDOT thermoelectric materials, while clarifying directions for future development. This book provides a comprehensive overview of chemical, physical, and technical information about this organic thermoelectric polymer. The authors also give details about the theoretical basis of PEDOT, including preparation and characterization, and its development as a high-performance thermoelectric material.
Nanotechnology-based Sustainable Alternatives for the Management of Plant Diseases addresses the power of sustainable nanomaterials for plant and food protection. The book highlights dangers arising from bacteria, fungi, viruses, insects, seeds, plants, fruits and food production and summarizes new and sustainable strategies. It places a particular focus on plant pathogen control, and in the food packaging sector in agri-food applications. The control of plant pathogens in plants and in food has been conventionally made by adding chemical preservatives and by using thermal processing, but sustainable nanotechnology can be a power tool to aid in this complex set of challenges. Advances in materials science have led to the rapid development of nanotechnology that has great potential for improving food safety as a powerful tool for the delivery and controlled release of natural antimicrobials.
Micro- and Nano-Bionic Surfaces: Biomimetics, Interface Energy Field Effects, and Applications synthesizes the latest research in bio-inspired surfaces and devices for tactile and flow field perception. The book provides solutions to common problems related to flow field/tactile perception, intelligent MEMS sensors, smart materials, material removal methods, cell/particle control methods, and micro-nano robot technology. With a heavy emphasis on applications throughout, the book starts by providing insights into biomimetic device design, outlining strategies readers can adopt for various engineering applications. From there, it introduces the controlling methods of smart materials, controlling methods from external energy input, and more. Sections demonstrate how to solve problems of high efficiency, high quality, and low damage material removal for metals, composites, soft tissues, and other materials by applying bionic wave-motion surface characteristics. The latest theoretical and technical developments in field control methods applied to biological interfaces are also discussed, and the book concludes with a chapter on fabrication strategies to synthesize micro/nano functional particles based on bio-templates.
Nanomaterial Recycling provides an update on the many benefits nanomaterials can provide on both environmental and economic issues. Sections cover the appropriate recycling strategies of nanowastes, nanowaste regulations (including nanowaste disposal and recycling standards), promising applications (reuses) of these recycled nanomaterials, and various methods used for the separation of nanoparticles, including (i) centrifugation, (ii)solvent evaporation, (iii) magnetic separation, (iv) using pH/thermal responsive materials, (v) molecular antisolvents, (vi) nanostructured colloidal solvents, and more. This book is an important reference source for materials scientists and engineers who are seeking to increase their understanding of nanomaterials, recycling processes and techniques. As nanomaterials can be recycled from both new/pure products (from nano manufacturing) and used products (nano waste: waste from nano integrated products), this book is a welcomed addition to many disciplines.
Hybrid Nanomaterials for Drug Delivery covers a broad range of hybrid nanomaterials and nanocomposites used in drug delivery systems. The book reviews a variety of hybrid nanomaterials and structures, including polymer-lipid, chitosan-based, protein-inorganic, quantum dot hybrids, and more. The strengths, limitations and regulatory aspects of hybrid drug delivery systems are also discussed, allowing readers to make informed decisions when choosing to utilize hybrid nanomaterials. Users will find this to be an exciting and comprehensive look into this emerging area. It will be of particular interest to academics and researchers working in materials science, engineering, biomedical engineering, nanotechnology and pharmaceutical science. Multi nanocarrier-based hybrid systems are an emerging concept in the field of drug delivery that allow researchers to avoid some of the challenges faced when administering drugs, such as low bioavailability, development of drug resistance, toxicities, premature drug release, and therapeutic efficacy.
Metal Oxide-Carbon Hybrid Materials: Synthesis, Properties and Applications reviews the advances in the fabrication and application of metal oxide-carbon-based nanocomposite materials. Their unique properties make them ideal materials for gas-sensing, photonics, catalysis, opto-electronic, and energy-storage applications. In the first section, the historical background to the hybrid materials based on metal oxide-carbon and the hybridized metal oxide composites is provided. It also highlights several popular methods for the preparation of metal oxide-carbon composites through solid-state or solution-phase reactions, and extensively discusses the materials' properties. Fossil fuels and renewable energy sources cannot meet the ever-increasing energy demands of an industrialized and technology-driven global society. Therefore, the role of metal oxide-carbon composites in energy generation, hydrogen production, and storage devices, such as rechargeable batteries and supercapacitors, is of extreme importance. These problems are discussed in in the second section of the book. Rapid industrialization has resulted in serious environmental issues which in turn have caused serious health problems that require the immediate attention of researchers. In the third section, the use of metal oxide-carbon composites in water purification, photodegradation of industrial contaminants, and biomedical applications that can help to clean the environment and provide better healthcare solutions is described. The final section is devoted to the consideration of problems associated with the development of sensors for various applications. Numerous studies performed in this area have shown that the use of composites can significantly improve the operating parameters of such devices. Metal Oxide-Carbon Hybrid Materials: Synthesis, Properties and Applications presents a comprehensive review of the science related to metal oxide-carbon composites and how researchers are utilizing these materials to provide solutions to a large array of problems.
Sustainable Nanotechnology for Environmental Remediation provides a single-source solution to researchers working in environmental, wastewater management, biological and composite nanomaterials applications. It addresses the potential environmental risks and uncertainties surrounding the use of nanomaterials for environmental remediation, giving an understanding of their impact on ecological receptors in addition to their potential benefits. Users will find comprehensive information on the application of state-of-the-art processes currently available to synthesize advanced green nanocomposite materials and biogenic nanomaterials. Other sections explore a wide range of promising approaches for green nanotechnologies and nanocomposites preparations. Case study chapters connect materials engineering and technology to the social context for a sustainable environment. Applications and different case studies provide solutions to the challenges faced by industry, thus minimizing negative social impacts.
Tissue Engineering Using Ceramics and Polymers, Third Edition is a valuable reference tool for both academic researchers and scientists involved in biomaterials or tissue engineering, including the areas of bone and soft-tissue reconstruction, repair and organ regeneration. With its distinguished editors and international team of contributors, this book reviews the latest research and advances in this thriving area and how they can be used to develop treatments for disease states. New sections cover nanobiomaterials, drug delivery, advanced imaging and MRI for tissue engineering, and characterization of vascularized scaffolds. Technology and research in the field of tissue engineering has drastically increased within the last few years to the extent that almost every tissue and organ of the human body could potentially be regenerated with the aid of biomaterials.
Biomaterials in Endodontics offers an up-to-date overview of endodontic biomaterials and their applications in regenerative medicine and tissue engineering. This book details the key biomaterials used in clinical endodontics and the benefits and challenges of using these materials, from root canal obturation materials to alloys for endodontic files and hand instruments. Chapters also offer a unique insight into the regenerative applications of endodontic biomaterials, such as the use of stem cells and growth factors for bone regeneration. Biomaterials in Endodontics is a useful resource for researchers working in biomedical engineering, regenerative medicine, and materials science with an interest in dentistry and bone regeneration. This book is also a helpful guide for endodontists, dentists, dental scientists, and clinicians with an interest in biomaterials for endodontics.
Semiconductor Nanodevices: Physics, Technology and Applications explores recent advances in the field. The behaviour of these devices is controlled by regions of nanoscale dimensions which typically determine the local density of electronic states and lead to the observation of a range of quantum effects with significant potential for exploitation. The book opens with an introduction describing the development of this research field over the past few decades which contrasts quantum-controlled devices to conventional nanoscale electronic devices where an emphasis has often been placed on minimising quantum effects. This introduction is followed by seven chapters describing electrical nanodevices and five chapters describing opto-electronic nanodevices; individual chapters review important recent advances. These chapters include specific fabrication details for the structures and devices described as well as a discussion of the physics made accessible. It is an important reference source for physicists, materials scientists and engineers who want to learn more about how semiconductor-based nanodevices are being developed for both science and potential industrial applications. The section on electrical devices includes chapters describing the study of electron correlation effects using transport in quantum point contacts and tunnelling between one-dimensional wires; the high-frequency pumping of single electrons; thermal effects in quantum dots; the use of silicon quantum dot devices for qubits and quantum computing; transport in topological insulator nanoribbons and a comprehensive discussion of noise in electrical nanodevices. The optical device section describes the use of self-assembled III-V semiconductor nanostructures embedded in devices for a range of applications, including quantum dots for single and entangled photon sources, quantum dots and nanowires in lasers and quantum dots in solar cells.
Mechanics and Physics of Structured Media: Asymptotic and Integral Methods of Leonid Filshtinsky provides unique information on the macroscopic properties of various composite materials and the mathematical techniques key to understanding their physical behaviors. The book is centered around the arguably monumental work of Leonid Filshtinsky. His last works provide insight on fracture in electromagnetic-elastic systems alongside approaches for solving problems in mechanics of solid materials. Asymptotic methods, the method of complex potentials, wave mechanics, viscosity of suspensions, conductivity, vibration and buckling of functionally graded plates, and critical phenomena in various random systems are all covered at length. Other sections cover boundary value problems in fracture mechanics, two-phase model methods for heterogeneous nanomaterials, and the propagation of acoustic, electromagnetic, and elastic waves in a one-dimensional periodic two-component material.
Storing Energy: With Special Reference to Renewable Energy Sources, Second Edition has been fully revised and substantially extended to provide up-to-date and essential discussion that will support the needs of the world's future energy and climate change policies. New sections cover thermal energy storage, tidal storage, sustainability issues in relation to storing energy and impacts on global energy markets. Various systems are discussed, including mechanical/kinetic, thermal, electrochemical and other chemical, as well as other emerging technologies. Incorporating advancements described in the book will help the people of the world further overcome the problems related to future energy and climate change.
Rheology: Concepts, Methods, and Applications, Fourth Edition provides a thorough historical and theoretical grounding in the field and introduces rheology as the method for solving many practical problems in materials science and engineering. This new edition has been updated to include new evidence-based methods and applications, coverage of non-Newtonian properties and their effect on material processing, heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow and molecular orientation. The book is practical and relevant for industry, but also consistent with rheology courses in academia, making it relevant to both academics and accomplished rheologists in industry.
Principles of Electron Optics: Second Edition, Advanced Wave Optics provides a self-contained, modern account of electron optical phenomena with the Dirac or Schroedinger equation as a starting point. Knowledge of this branch of the subject is essential to understanding electron propagation in electron microscopes, electron holography and coherence. Sections in this new release include, Electron Interactions in Thin Specimens, Digital Image Processing, Acquisition, Sampling and Coding, Enhancement, Linear Restoration, Nonlinear Restoration - the Phase Problem, Three-dimensional Reconstruction, Image Analysis, Instrument Control, Vortex Beams, The Quantum Electron Microscope, and much more.
The purpose of aligning short fibers in a fiber-reinforced material is to improve the mechanical properties of the resulting composite. Aligning the fibers, generally in a preferred direction, allows them to contribute as much as possible to reinforcing the material. The first edition of this book detailed, in a single volume, the science, processing, applications, characterization and properties of composite materials reinforced with short fibers that have been orientated in a preferred direction by flows arising during processing. The technology of fiber-reinforced composites is continually evolving and this new edition provides timely and much needed information about this important class of engineering materials. Each of the original chapters have been brought fully up-to-date and new developments such as: the advent of nano-composites and the issues relating to their alignment; the wider use of long-fiber composites and the appearance of models able to capture their orientation during flow; the wider use of flows in micro-channels in the context of composites fabrication; and the increase in computing power, which has made relevant simulations (especially coupling flow kinematics to fiber content and orientation) much easier to perform are all covered in detail. The book will be an essential up-to-date reference resource for materials scientists, students, and engineers who are working in the relevant areas of particulate composites, short fiber-reinforced composites or nanocomposites.
Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes (TADF-OLEDs) comprehensively introduces the history of TADF, along with a review of fundamental concepts. Then, TADF emitters with different colors, such as blue, green, red and NIR as well as white OLEDs are discussed in detail. Other sections cover exciplex-type TADF materials, emerging application of TADF emitters as a host in OLEDs, and applications of TADF materials in organic lasers and biosensing.
Functional Materials Processing for Switchable Device Modulation focuses on the advances of nanofabrication that underpin emerging technologies, including electronic devices. The book provides readers with a broad view of the materials' perspectives, including historical context and background, along with future opportunities for smart electronic and switchable devices. A major focus in the book is on the research and development of synthetic materials for spectroscopic analysis which broadly deals with science and technology of materials on the atomic and molecular scale. The book reviews the materials and advances in research for switchable electronics for bioelectronic, sensing and optoelectronic applications. In addition, key challenges and emerging opportunities in innovations in surface modification and novel functional materials device implementation for industrial scale reproducibility are discussed. The book covers the applications and market potential for a variety of media, including mirrors, glazing/coatings, and display products. The physics, electrochemistry, device design and materials are detailed, with performance compared between the most relevant and emerging switchable technologies. |
You may like...
Kinetics of Metallurgical Processes
Hem Shanker Ray, Saradindukumar Ray
Hardcover
R2,733
Discovery Miles 27 330
Metal-Dielectric Interfaces in Gigascale…
Ming He, Toh-Ming Lu
Hardcover
R2,646
Discovery Miles 26 460
Powerful Pulsed Plasma Generators…
Victor Kolikov, Alexander Bogomaz, …
Hardcover
R3,354
Discovery Miles 33 540
|