![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials
Mathematical Techniques of Fractional Order Systems illustrates advances in linear and nonlinear fractional-order systems relating to many interdisciplinary applications, including biomedical, control, circuits, electromagnetics and security. The book covers the mathematical background and literature survey of fractional-order calculus and generalized fractional-order circuit theorems from different perspectives in design, analysis and realizations, nonlinear fractional-order circuits and systems, the fractional-order memristive circuits and systems in design, analysis, emulators, simulation and experimental results. It is primarily meant for researchers from academia and industry, and for those working in areas such as control engineering, electrical engineering, computer science and information technology. This book is ideal for researchers working in the area of both continuous-time and discrete-time dynamics and chaotic systems.
Adhesive Bonding: Science, Technology and Applications, Second Edition guides the reader through the fundamentals, mechanical properties and applications of adhesive bonding. This thoroughly revised and expanded new edition reflects the many advances that have occurred in recent years. Sections cover the fundamentals of adhesive bonding, explaining how adhesives and sealants work, and how to assess and treat surfaces, how adhesives perform under stress and the factors affecting fatigue and failure, stress analysis, environmental durability, non-destructive testing, impact behavior, fracture mechanics, fatigue, vibration damping, and applications in construction, automotive, marine, footwear, electrical engineering, aerospace, repair, electronics, biomedicine, and bonding of composites. With its distinguished editor and international team of contributors, this book is an essential resource for industrial engineers, R&D, and scientists working with adhesives and their industrial applications, as well as researchers and advanced students in adhesion, joining, polymer science, materials science and mechanical engineering.
Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications introduces the principles, properties, and emerging applications of this important materials system. The hybridization of magnetic nanoparticles with metals, metal oxides and semiconducting nanoparticles may result in superior properties. The book reviews the most relevant hybrid materials, their mechanisms and properties. Then, the book focuses on the rational design, controlled synthesis, advanced characterizations and in-depth understanding of structure-property relationships. The last part addresses the promising applications of hybrid nanomaterials in the real world such as in the environment, energy, medicine fields. Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications comprehensively reviews both the theoretical and experimental approaches used to rapidly advance nanomaterials that could result in new technologies that impact day-to-day life and society in key areas such as health and the environment. It is suitable for researchers and practitioners who are materials scientists and engineers, chemists or physicists in academia and R&D.
Handbook of Functionalized Nanomaterials: Environmental Health and Safety discusses the reactive properties of FNMs used in a range of applications, and their toxic impact on the environment. Nanomaterials have unique properties that can make them highly reactive. This reactivity can cause unwanted interactions with living cells, an increase in oxidative stress or damage to genetic material - resulting in damage to the environment and local wildlife. This negative impact is often further increased after surface functionalization of nanomaterials with other materials which offer unique properties of their own. To ensure environmental safety and ecological balance, rigorous toxicity testing of functionalized nanomaterials (FNMs) is necessary. This book discusses the toxicological uncertainties of FNMs and the limitations of FNMs in a range of applications. Later chapters propose methods to reliably assess the harm that functionalized nanomaterials can cause to the environment and wildlife, as well covering recent developments in the field of environmental health safety. The book concludes with a discussion on the future prospects of safe functionalized nanomaterials.
Polymer Nanocomposites Containing Graphene: Preparation, Properties and Applications provides detailed up-to-date information on the characterization, synthesis, processing, properties and application of these materials. Key topics that are covered in the book include: the methods of synthesis and preparation of graphene as well as different processes and methods of functionalization and modification of graphene for improving composite properties. The preparation techniques focus on which method is advantageous for getting improvements in properties along with their drawbacks. The structure and property relationships are also discussed in detail. The issues related to graphene dispersion in polymer matrices is also addressed as well as the use of graphene as reinforcement in thermoset resins. The different properties of the composites like mechanical, electrical, dielectric, thermal, rheological, morphology, spectroscopy, electronic, optical, and toxicity are reviewed from the geometrical and functional point of view. Applications cover electrical and electronic fields, flame and fire retardancy, structural, sensing and catalysis, membrane, in fuel cell and solar energy, hydrogen production, aerospace engineering, packaging, and biomedical/bioengineering fields. Up-to-date patents on graphene-polymer nanocomposites are also covered. Those working in graphene-based materials will benefit from the detailed knowledge presented in this book on graphene synthesis, composite preparation methods, and the related problems associated with them. The book will enable researchers to select the appropriate composite as per their respective field of application.
Thin Film Nanophotonics: Conclusions from the Third International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors (TFE3S) provides up-to-date coverage of the properties and photonic applications of nanostructured thin films, including discussions on optical waveguides, photonic lattices for wideband reflectors, polarizers, bandpass filters, meta surfaces, plasmonic resonance sensors, smart windows, optical switches, photovoltaics, and many more. This is an important reference source for materials scientists, engineers and physicists working in the areas of nanomaterials and photonics. New thin film applications such as thin-film topological insulators and 2D materials are gaining attention and growing exponentially, hence this book is an ideal reference on how engineered thin films for various nano-photonics applications present exponential growth in a wide array of areas.
Nanosensors for Smart Manufacturing provides information on the fundamental design concepts and emerging applications of nanosensors in smart manufacturing processes. In smart production, if the products and machines are integrated, embedded, or equipped with sensors, the system can immediately collect the current operating parameters, predict the product quality, and then feed back the optimal parameters to machines in the production line. In this regard, smart sensors and their wireless networks are important components of smart manufacturing. Nanomaterials-based sensors (nanosensors) offer several advantages over their microscale counterparts, including lower power consumption, fast response time, high sensitivity, lower concentration of analytes, and smaller interaction distance between sensors and products. With the support of artificial intelligence (AI) tools such as fuzzy logic, genetic algorithms, neural networks, and ambient intelligence, sensor systems have become smarter. This is an important reference source for materials scientists and engineers who want to learn more about how nanoscale sensors can enhance smart manufacturing techniques and processes.
Polymer-based fibre-reinforced composites FRC's have now come out as a major class of structural materials being used or regarded as substituent's for metals in several critical components in space, automotive and other industries (marine, and sports goods) owing to their low density, strength-weight ratio, and fatigue strength. FRC's have several commercial as well as industrial applications ranging from aircraft, space, automotive, sporting goods, marine, and infrastructure. The above-mentioned applications of FRC's clearly reveal that FRC's have the potential to be used in a broad range of different engineering fields with the added advantages of low density, and resistance to corrosion compared to conventional metallic and ceramic composites. However, for scientists/researchers/R&D's to fabricate FRC's with such potential there should be careful and precise design followed by suitable process development based on properties like mechanical, physical, and thermal that are unique to each application. Hence the last few decades have witnessed considerable research on fibre reinforced composites. Fibre Reinforced Composites: Constituents, Compatibility, Perspectives and Applications presents a widespread all-inclusive review on fibre-reinforced composites ranging from the different types of processing techniques to chemical modification of the fibre surface to enhance the interfacial adhesion between the matrix and fibre and the structure-property relationship. It illustrates how high value composites can be produced by efficient and sustainable processing methods by selecting different constituents [fibres and resins]. Researchers in academia working in composites and accompanying areas [materials characterisation] and industrial manufacturers who need information on composite constituents and how they relate to each other for a certain application will find the book extremely useful when they need to make decisions about materials selection for their products.
The textile industry is focused in its search for alternative green fibres with the aim of providing high-quality products which are fully recyclable and biodegradable. Natural textile materials from renewable sources play an increasingly important role in the industry due to their unique properties and functionality over synthetic fibres, as well as their sustainability. Fundamentals of Natural Fibres and Textiles covers all the fundamental and basic information about natural fibres and textiles. Many different fibres are covered from their origin, through processing, properties, and applications. The latest methods for characterisation and testing of natural fibres are all addressed with reference to cutting-edge industry trends. This uniquely comprehensive approach to the topic provides the ideal entry point to natural fibres for textile and clothing scientists, engineers, designers, researchers, students, and manufacturers of such products.
Automotive Plastics and Composites: Materials and Processing is an essential guide to the use of plastic and polymer composites in automotive applications, whether in the exterior, interior, under-the-hood, or powertrain, with a focus on materials, properties, and processing. The book begins by introducing plastics and polymers for the automotive industry, discussing polymer materials and structures, mechanical, chemical, and physical properties, rheology, and flow analysis. In the second part of the book, each chapter is dedicated to a category of material, and considers the manufacture, processing, properties, shrinkage, and possible applications, in each case. Two chapters on polymer processing provide detailed information on both closed-mold and open-mold processing. The final chapters explain other key aspects, such as recycling and sustainability, design principles, tooling, and future trends. This book is an ideal reference for plastics engineers, product designers, technicians, scientists, and R&D professionals who are looking to develop materials, components, or products for automotive applications. The book also intends to guide researchers, scientists, and advanced students in plastics engineering, polymer processing, and materials science and engineering.
The textile industry is focused in its search for alternative green fibres with the aim of providing high-quality products which are fully recyclable and biodegradable. Natural textile materials from renewable sources play an increasingly important role in the industry due to their unique properties and functionality over synthetic fibres, as well as their sustainability. Antimicrobial Textiles from Natural Resources is an in-depth guide to the latest methods and applications of natural antimicrobial materials. A broad range of applications are addressed, from common to specialized applications, including many in the biomedical sector. This world-class collection of contributors write from a range of disciplinary backgrounds, providing important insights from textile science and technology, materials science, chemical engineering, and biomedical engineering. Advice and proposed solutions are presented in a rigorous and practical way, drawing on results and case studies obtained from academic and industrial laboratories worldwide.
Nanostructured Zinc Oxide covers the various routes for the synthesis of different types of nanostructured zinc oxide including; 1D (nanorods, nanowires etc.), 2D and 3D (nanosheets, nanoparticles, nanospheres etc.). This comprehensive overview provides readers with a clear understanding of the various parameters controlling morphologies. The book also reviews key properties of ZnO including optical, electronic, thermal, piezoelectric and surface properties and techniques in order to tailor key properties. There is a large emphasis in the book on ZnO nanostructures and their role in optoelectronics. ZnO is very interesting and widely investigated material for a number of applications. This book presents up-to-date information about the ZnO nanostructures-based applications such as gas sensing, pH sensing, photocatalysis, antibacterial activity, drug delivery, and electrodes for optoelectronics.
This third volume of the new ASME Press Book Series on Renewable Energy also edited by Dr. Rao and published by ASME Press is based on updated chapters from the classic 2011 Handbook of Energy and Power Generation in addition to a new chapter appropriate for the title of this book. The discussions in this book update Wind Energy since the publication of 2011 Handbook by Dr. Rao in Chapters 1, 2, 3 and 4. Since the coverage in the 2011 Handbook is considered applicable even for the present it is retained in total with the contributions for original authors for Chapters 1, 2, 3 and 4 an update for Chapter 6, 7, 8 and 9 of the 2011 Handbook. Chapter 1 covers "NASA Developments and Potential"; Chapter 2 addresses "Scope of Wind Energy Generation Technologies since 2011"; and Chapter 3 "Scope of Wind Energy in the US since 2011; and Chapter 4 "Wind Energy in the Netherlands Since 2011". Chapter 5, an update of Chapter 10 of the 2011 Handbook is titled as before in the 2011 Handbook, "Role of Wind Energy Technology in India and Neighboring Countries" by original author M.P. Ramesh and finally the last Chapter 6 is a new Chapter "Artificial Intelligence in Wind Energy" by Dr. Weifei Hu. The book contains over 200 pages with 28 tables, 143 figures, 379 footnotes and over 102 additional references in this updated version. The book has an index as before in the original edition, to help users easily navigate through the text and graphics.
Hybrid Atomic-Scale Interface Design for Materials Functionality covers a broad range of atomistic, meso and macro scale computational methodologies, including multiphase (hybrid) materials constructs for tailoring structural, thermal and electrical properties. As future materials are expected to perform with increasing efficiency in complex and dynamic environments hybrid materials design, in contrast to monolithic concepts, they are a cost-effective alternative. Taking materials hybridization at smaller scale, even at atomic scale, offers exceedingly high-payoff opportunities for optimizing materials functionality at reduced material consumption and even reduced qualification costs (eliminates many costly component and system level qualification tests).
Magnetic skyrmions are particle-like objects described by localized solutions of non-linear partial differential equations. Up until a few decades ago, it was believed that magnetic skyrmions only existed in condensed matter as short-term excitations that would quickly collapse into linear singularities. The contrary was proven theoretically in 1989 and evidentially in 2009. It is now known that skyrmions can exist as long-living metastable configurations in low-symmetry condensed matter systems with broken mirror symmetry, increasing the potential applications possible. Magnetic Skyrmions and their Applications delves into the fundamental principles and most recent research and developments surrounding these unique magnetic particles. Despite achievements in the synthesis of systems stabilizing chiral magnetic skyrmions and the variety of experimental investigations and numerical calculations, there have not been many summaries of the fundamental physical principles governing magnetic skyrmions or integrating those concepts with methods of detection, characterization and potential applications. Magnetic Skyrmions and their Applications delivers a coherent, state-of-the-art discussion on the current knowledge and potential applications of magnetic skyrmions in magnetic materials and device applications. First the book reviews key concepts such as topology, magnetism and materials for magnetic skyrmions. Then, charactization methods, physical mechanisms, and emerging applications are discussed.
Polysaccharide-Based Nanocomposites for Gene Delivery and Tissue Engineering presents quantitative background on new polysaccharide nanocomposites in a clear and logical way, highlighting the most exciting applications in gene delivery and tissue engineering and their progress. The book focuses on the different types of polysaccharide nanocomposites for gene delivery and tissue engineering and covers polysaccharide hydrogels for tissue engineering and polysaccharide magnetic nanocomposites for gene delivery. Chapters cover various nanocomposites presented in twenty-one separate chapters. This book will be of great interest to all those researching the development and applications of polysaccharide-based nanocomposites for modeling. As polysaccharide-based nanocomposites promise cutting-edge applications in gene delivery and tissue engineering, with their development at the forefront of modern medicine, this book is a welcome title on this exciting science.
Waste and By-Products in Cement-Based Materials: Innovative Sustainable Materials for a Circular Economy covers various recycled materials, by-products and wastes that are suitable for the manufacture of materials within the spectrum of so-called cement-based materials (CBM). Sections cover wastes for replacement of aggregates in CBM, focus on the application of wastes for the replacement of clinker and mineral additions in the manufacture of binders, discuss the optimization process surrounding the manufacture of recycled concrete and mortars, multi-recycling, advanced radiological studies, optimization of self-compacting concrete, rheology properties, corrosion prevention, and more. Final sections includes a review of real-scale applications that have been made in recent years of cement-based materials in roads, railway superstructures, buildings and civil works, among others, as well as a proposal of new regulations to promote the use of waste in the manufacture of CBM.
Sustainable Material Solutions for Solar Energy Technologies: Processing Techniques and Applications provides an overview of challenges that must be addressed to efficiently utilize solar energy. The book explores novel materials and device architectures that have been developed to optimize energy conversion efficiencies and minimize environmental impacts. Advances in technologies for harnessing solar energy are extensively discussed, with topics including materials processing, device fabrication, sustainability of materials and manufacturing, and current state-of-the-art. Leading international experts discuss the applications, challenges, and future prospects of research in this increasingly vital field, providing a valuable resource for students and researchers working in this field.
|
You may like...
The Best Damn Cybercrime and Digital…
Jack Wiles, Anthony Reyes
Paperback
R1,269
Discovery Miles 12 690
Basics of Software Engineering…
Natalia Juristo, Ana M. Moreno
Hardcover
R5,369
Discovery Miles 53 690
Optical Sensors, Devices and Systems
Vladimir Latinovic
Hardcover
Building Information Modelling (BIM) in…
W. P. de Wilde, L. Mahdjoubi, …
Hardcover
R4,604
Discovery Miles 46 040
|