![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials
Characterization of Polymers and Fibres addresses an integral part of fiber and polymer manufacturing processes that is crucial in helping manufacturers ensure that final products achieve intended specifications. The characterization of fiber and polymers is needed for attributes including molecular weight, morphology, dyeing behavior, tensile, optical and thermal behavior. This book covers a wide range of characterization techniques, including thermal, X-ray diffraction, solubility, tensile, optical, hygroscopic and particle size distribution. Introductions and definitions are provided where beneficial to make topics accessible to a broad range of readers in both academia and industry. Addressing advances from the fields of bioscience, polymer science, material science, and textile science, this book is wide in scope, drawing on the latest research to provide details of characterization techniques and equipment.
Severe Plastic Deformation: Methods, Processing and Properties examines all severe plastic deformation techniques developed over the past two decades, exploring the appropriate severe plastic deformation method for a particular case. The book offers an overview of these methods, introduces ultrafine-grained and nano-grained metals and methods for various bulk, sheet, tubular and large size samples, reviews effective parameters to make a severe plastic deformation method better, from property (mechanical) and processing (cost, time, load, etc.) viewpoints, discusses mechanical, physical and chemical properties of UFG and NS metals, and concludes with various applications for these methods. Over the last several decades, a large number of severe plastic deformation methods have been developed for processing a wide array of metals for superior properties, making this a timely resource.
This book focuses on the application of carbon nanotubes and carbon nanofibers in traditional concretes based on Portland cement. Fundamental information is given related to the production technologies of carbon nanotubes and carbon nanofibers, as well as concretes and methods of incorporation. It also contains a section focusing on the possible negative effects of carbon nanotubes and carbon nanofibers on animals and humans. The book indicates benefits and possible problems related to the application of carbon nanotubes and carbon nanofibers in concrete. It is designed to be easy to access and digest for the reader, aiming to reach an audience, not only from academia, but also from the construction industry, materials producers, and contractors who might work with nanomaterials.
Applications of Biotechnology for Sustainable Textile Production is a practical guide to the fundamentals, methods, and future prospects for sustainable biotechnological and nanobiotechnological approaches to textile production. The textile industry is highly motivated to reduce its use of natural resources, reduce waste, and cost. Processes such as dyeing, printing and finishing fabrics traditionally require a lot of water and can produce hazardous wastes as a by-product. In order to help improve these processes, this book evaluates different technologies, comparing them as ways of saving water, energy, material waste, and time, in addition to the reduction of wastewater and sludge. Technologies investigated include enzymatic treatments, ultrasonic treatments, advanced cotton fiber pre-treatment to increase dye receptivity, nano-biotechnology, plasma technology, and foam technology in the finishing process. Health risk assessments and complications resulting from usage of chemicals and other traditional processing technologies are also examined.
Nanoscale Graphitic Carbon Nitride focuses on multi-functional applications including energy conversion, storage and healthcare. Polymeric graphitic carbon nitride materials have attracted much attention in recent years because of their similarity to graphene. They are composed of carbon, nitrogen and some minor hydrogen content. In contrast to graphene, g-Graphitic carbon nitride is a medium band-gap semiconductor and in that role an effective photocatalyst and chemical catalyst for a broad variety of reactions and applications. This book covers the fundamentals and applications of graphitic carbon nitride (g-C3N4) in different sectors. It also covers the application of graphitic carbon nitride-based composites with metal, metal oxides, metal sulphide and carbon-based materials. This is an important resource for researchers in the fields of materials science, engineering, energy storage and chemical engineering who want to understand how nanoscale graphitic carbon nitride is being used for a range of industrial applications and processes.
Estimation and Control of Large Scale Networked Systems is the first book that systematically summarizes results on large-scale networked systems. In addition, the book also summarizes the most recent results on structure identification of a networked system, attack identification and prevention. Readers will find the necessary mathematical knowledge for studying large-scale networked systems, as well as a systematic description of the current status of this field, the features of these systems, difficulties in dealing with state estimation and controller design, and major achievements. Numerical examples in chapters provide strong application backgrounds and/or are abstracted from actual engineering problems, such as gene regulation networks and electricity power systems. This book is an ideal resource for researchers in the field of systems and control engineering.
Polymer-Based Separators for Lithium-Ion Batteries: Production, Processing, and Properties takes a detailed, systematic approach to the development of polymer separators for lithium-ion batteries, supporting the reader in selecting materials and processes for high-performance polymer separators with enhanced properties. The book begins by introducing the polymeric materials that may be used for separators, as well as characterization techniques, before presenting the available technologies used to produce separators for use in lithium-ion batteries. Each technology is discussed in terms of the advantages and disadvantages of the chosen approach, with the properties of the separators made via each technology also summarized and compared in detail. In addition, areas for further development are addressed, and the limitations of current materials and separators in achieving those goals are highlighted. This is a valuable resource for scientists and engineers in the industry who work on polymer-based battery separators, polymers for electronic/energy applications, and new materials and processes for lithium-ion batteries. In academia, this book will be of interest to researchers and advanced students across the fields of polymer science, materials science, electronics, energy, and chemical engineering.
Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites: From Synthesis to Applications offers extensive coverage of polyhedral oligomeric silsesquioxanes and their nanocomposites, including their synthesis, characterization, interfacial interactions and advanced applications. Sections introduce essentials, information on their preparation and discussions on polymeric materials, including elastomers, thermoplastics, thermosetting polymers, polymer blends and IPNs. Further sections cover the latest analysis techniques, examine the properties of POSS-polymer nanocomposites, and discuss key application areas, such as biological, energy, defense, and space. Finally, issues surrounding industry implementation and lifecycle are explored. This is a valuable reference for researchers, scientists and advanced students in the areas of polymer composites and nanocomposites, polymer chemistry, polymer physics, polymer science, and materials science and engineering. In an industrial setting, this book will be of great interest to scientists, R&D professionals, and engineers across industries and disciplines.
The greatest benefits of nanoscale additive manufacturing lie in biomedicine, smart devices/sensors, energy harvesting, aerospace, and manufacturing. This book explores the recent applications of functionalized nanomaterials-based additive manufacturing to benefit different manufacturing domains, including design and process aspects, as well as outlining major application areas. This book summarizes recent progress of functionalized nanomaterials-based additive manufacturing on both an experimental and a theoretical model level. Though nanomaterials can be fabricated by bottom-up and top-down approaches (techniques include lithography, photolithography, and micro-machining), the applications of additive manufacturing processes are increasing at an exponential rate and therefore, the demand for high-performance materials has been greatly increasing. Recent applications covered in this book include biomedicine, aerospace, automobile, waste recycling, and energy storage devices. Environmental, regulatory and safety issues are also discussed. This book is an important reference source for materials scientists and engineers who are seeking to improve their understanding of how functionalized nanomaterials are playing an increasingly important role in the additive manufacturing process.
Nanomagnetic Materials: Fabrication, Characterization and Application explores recent studies of conventional nanomagnetic materials in spintronics, data storage, magnetic sensors and biomedical applications. In addition, the book also reviews novel magnetic characteristics induced in two-dimensional materials, diamonds, and those induced by the artificial formation of lattice defect and heterojunction as novel nanomagnetic materials. Nanomagnetic materials are usually based on d- and f-electron systems. They are an important solution to the demand for higher density of information storage, arising from the emergence of novel technologies required for non-volatile memory systems. Advances in the understanding of magnetization dynamics and in the characteristics of nanoparticles or surface of nanomagnetic materials is resulting in greater expansion of applications of nanomagnetic materials, including in biotechnology, sensor devices, energy harvesting, and power generating systems. This book provides a cogent overview of the latest research on novel nanomagnetic materials, including spintronic nanomagnets, molecular nanomagnets, self-assembling magnetic nanomaterials, nanoparticles, multifunctional materials, and heterojunction-induced novel magnetism.
From the time it was organized in 1880, the American Society of Mechanical Engineers recorded aspects of the history of the mechanical engineering profession and the careers of some of its notable practitioners. The Society's historical efforts were formalized in 1971 with the creation of a History and Heritage Committee. This volume commemorates the fiftieth anniversary of the formation of that committee and collects, in a single place, many of the historical contributions published over the past fifty years in ASME's flagship magazine, Mechanical Engineering. In preparation for the United States' bicentennial year, and later the Society's centennial, the editors of Mechanical Engineering contracted with engineer-historian Fritz Hirschfeld for a long series of articles about the county's early mechanical engineering heritage and the lives of notable mechanical engineers, particularly those associated with ASME's founding. Hirschfeld's articles form the foundation of this volume. To supplement Hirschfeld's work, the editors have added numerous other historical articles published in Mechanical Engineering. The engineering innovations described by these articles have been enormously important to the development of modern technological society, and the stories behind their development should be of interest to engineers interested in the history of their profession, as well as anyone interested in American history.
Mathematical Techniques of Fractional Order Systems illustrates advances in linear and nonlinear fractional-order systems relating to many interdisciplinary applications, including biomedical, control, circuits, electromagnetics and security. The book covers the mathematical background and literature survey of fractional-order calculus and generalized fractional-order circuit theorems from different perspectives in design, analysis and realizations, nonlinear fractional-order circuits and systems, the fractional-order memristive circuits and systems in design, analysis, emulators, simulation and experimental results. It is primarily meant for researchers from academia and industry, and for those working in areas such as control engineering, electrical engineering, computer science and information technology. This book is ideal for researchers working in the area of both continuous-time and discrete-time dynamics and chaotic systems.
Natural Polyphenols from Wood: Tannin and Lignin - An Industrial Perspective is a detailed guide to the sourcing and processing of tannin and lignin for valuable advanced applications across areas such as fuels, chemicals, drugs, and food. Drawing on the latest academic research and patent literature, this book provides strong practical understanding of the use of these valuable materials in novel industrial applications. This book introduces natural polyphenols from wood and the fundamental aspects of carbon management within the tree. In-depth presentation of extraction and characterization methods is followed by an extensive coverage of practical and industrial applications of wood polyphenols. This is an essential resource for researchers and advanced students working with lignin or tannin, and across biopolymer science, biomass, wood chemistry, paper, wood adhesives, polymer materials, renewable resources, and biotechnology. It also supports industrial R&D and scientists working with wood polyphenols or bio-based polymers.
Smart Product-Service Systems draws on innovative practice and academic research to demonstrate the unique benefits of Smart PSS and help facilitate its effective implementation. This comprehensive guide explains how Smart PSS reshapes product-service design in several unique aspects, including a closed-loop product design and redesign manner, value co-creation with integrated human-machine intelligence, and solution design context-awareness. Readers in industry as well as academia will find this to be an invaluable guide to the current body of technical knowledge on Smart Product-Service Systems (Smart PSS), future research trajectories, and experiences of implementation. Rapid development of information and communication technologies, artificial intelligence, and digital technologies have driven today's industries towards the so-called digital servitization era. As a result, a promising IT-driven business paradigm, known as Smart Product-Service Systems (Smart PSS) has emerged, where a large amount of low cost, high performance smart, connected products are leveraged, together with their generated on-demand services, as a single solution bundle to meet individual customer needs.
Polymer-based fibre-reinforced composites FRC's have now come out as a major class of structural materials being used or regarded as substituent's for metals in several critical components in space, automotive and other industries (marine, and sports goods) owing to their low density, strength-weight ratio, and fatigue strength. FRC's have several commercial as well as industrial applications ranging from aircraft, space, automotive, sporting goods, marine, and infrastructure. The above-mentioned applications of FRC's clearly reveal that FRC's have the potential to be used in a broad range of different engineering fields with the added advantages of low density, and resistance to corrosion compared to conventional metallic and ceramic composites. However, for scientists/researchers/R&D's to fabricate FRC's with such potential there should be careful and precise design followed by suitable process development based on properties like mechanical, physical, and thermal that are unique to each application. Hence the last few decades have witnessed considerable research on fibre reinforced composites. Fibre Reinforced Composites: Constituents, Compatibility, Perspectives and Applications presents a widespread all-inclusive review on fibre-reinforced composites ranging from the different types of processing techniques to chemical modification of the fibre surface to enhance the interfacial adhesion between the matrix and fibre and the structure-property relationship. It illustrates how high value composites can be produced by efficient and sustainable processing methods by selecting different constituents [fibres and resins]. Researchers in academia working in composites and accompanying areas [materials characterisation] and industrial manufacturers who need information on composite constituents and how they relate to each other for a certain application will find the book extremely useful when they need to make decisions about materials selection for their products.
The textile industry is focused in its search for alternative green fibres with the aim of providing high-quality products which are fully recyclable and biodegradable. Natural textile materials from renewable sources play an increasingly important role in the industry due to their unique properties and functionality over synthetic fibres, as well as their sustainability. Fundamentals of Natural Fibres and Textiles covers all the fundamental and basic information about natural fibres and textiles. Many different fibres are covered from their origin, through processing, properties, and applications. The latest methods for characterisation and testing of natural fibres are all addressed with reference to cutting-edge industry trends. This uniquely comprehensive approach to the topic provides the ideal entry point to natural fibres for textile and clothing scientists, engineers, designers, researchers, students, and manufacturers of such products.
Automotive Plastics and Composites: Materials and Processing is an essential guide to the use of plastic and polymer composites in automotive applications, whether in the exterior, interior, under-the-hood, or powertrain, with a focus on materials, properties, and processing. The book begins by introducing plastics and polymers for the automotive industry, discussing polymer materials and structures, mechanical, chemical, and physical properties, rheology, and flow analysis. In the second part of the book, each chapter is dedicated to a category of material, and considers the manufacture, processing, properties, shrinkage, and possible applications, in each case. Two chapters on polymer processing provide detailed information on both closed-mold and open-mold processing. The final chapters explain other key aspects, such as recycling and sustainability, design principles, tooling, and future trends. This book is an ideal reference for plastics engineers, product designers, technicians, scientists, and R&D professionals who are looking to develop materials, components, or products for automotive applications. The book also intends to guide researchers, scientists, and advanced students in plastics engineering, polymer processing, and materials science and engineering.
Composite materials have been well developed to meet the challenges of high-performing material properties targeting engineering and structural applications. The ability of composite materials to absorb stresses and dissipate strain energy is vastly superior to that of other materials such as polymers and ceramics, and thus they offer engineers many mechanical, thermal, chemical and damage-tolerance advantages with limited drawbacks such as brittleness. Composite Materials: Manufacturing, Properties and Applications presents a comprehensive review of current status and future directions, latest technologies and innovative work, challenges and opportunities for composite materials. The chapters present latest advances and comprehensive coverage of material types, design, fabrication, modelling, properties and applications from conventional composite materials to advanced composites such as nanocomposites, self-healing and smart composites. The book targets researchers in the field of advanced composite materials and ceramics, students of materials science and engineering at the postgraduate level, as well as material engineers and scientists working in industrial R& D sectors for composite material manufacturing.
Nanomedicine explores the modification and enhancement of the properties and performances of typical drugs to treat various diseases. Nano-based medicines have advantages in several ways, such as in nanotherapeutics, nanotheranostics, and nanodiagnostics. Nanomedicine Manufacturing and Applications effectively explores the major manufacturing techniques and applications of nanomaterial-based medicine in the areas of chemotherapy, biochips, insulin pumps, and other treatment methods. This book explains how nanomedicines are developed from nanoparticles as well as their biomedical and other applications related to healthcare. This book is an important reference source for nanoscientists, biomaterials scientists, and biomedical engineers who want to learn more about how nano-based medicines are made and used.
The textile industry is focused in its search for alternative green fibres with the aim of providing high-quality products which are fully recyclable and biodegradable. Natural textile materials from renewable sources play an increasingly important role in the industry due to their unique properties and functionality over synthetic fibres, as well as their sustainability. Antimicrobial Textiles from Natural Resources is an in-depth guide to the latest methods and applications of natural antimicrobial materials. A broad range of applications are addressed, from common to specialized applications, including many in the biomedical sector. This world-class collection of contributors write from a range of disciplinary backgrounds, providing important insights from textile science and technology, materials science, chemical engineering, and biomedical engineering. Advice and proposed solutions are presented in a rigorous and practical way, drawing on results and case studies obtained from academic and industrial laboratories worldwide.
Advances in Imaging and Electron Physics, Volume 218 merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains. Specific chapters in this release cover Phase retrieval methods applied to coherent imaging, X-ray phase-contrast imaging: a broad overview of some fundamentals, Graphene and borophene as nanoscopic materials for electronics - with review of the physics, and more.
|
You may like...
Electrofluidodynamic Technologies…
Vincenzo Guarino, Luigi Ambrosio
Hardcover
R5,304
Discovery Miles 53 040
Comprehensive Nuclear Materials
Rudy Konings, Roger Stoller
Hardcover
R78,910
Discovery Miles 789 100
Material Modeling with the Visco-Plastic…
Carlos N. Tome, Ricardo A. Lebensohn
Paperback
R5,403
Discovery Miles 54 030
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
|