![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials
An Introduction to Metallic Glasses and Amorphous Metals gives a background on the physics of materials, describing relevant experimental techniques. The book presents the necessary background in physics, thermodynamics, and the mechanics of solids, before moving on to cover elasticity, plasticity, fracture and the anelastic behavior of metallic glasses, relating these properties to chemical composition, atomic arrangement, microstructure, and methods of preparation. In addition, it compares the structure-property relationships specific to metallic glasses with polycrystalline metals and alloys and describes the properties and characteristics of metallic glasses. The general features and behavior of metallic glasses are also analyzed and summarized. The book includes full derivations of theory and equations and presents a compendium of experimental methods used in materials science to characterize and study metallic glasses and amorphous solids. The title is a comprehensive resource for any researcher interested in the materials science of metallic glasses and amorphous materials.
Modeling and Analysis of Passive Vibration Isolation Systems discusses a wide range of dynamic models that can be used for the design and analysis of passive vibration isolation systems. These models range from linear viscoelastic single degree-of-freedom systems to multiple degree-of-freedom nonlinear systems. They can be used to evaluate hyperelasticity and creep, and to represent the inertia effect for an evaluation of vibroacoustic characteristics at high frequencies. This book also highlights specific nonlinear behavior, displacement-limiting designs, hyperelastic behavior, and characteristics associated with elastomeric materials for each model. It also identifies key attributes, limitations, and constraints, providing a holistic reference that can be used for the design and analysis of passive vibration isolators. Modeling and Analysis of Passive Vibration Isolation Systems serves as a reference for engineers and researchers involved in the design, development, modeling, analysis, and testing of passive vibration isolation systems and as a reference for a graduate course in vibration modeling and analysis.
Food, Medical, and Environmental Applications of Polysaccharides provides a detailed resource for those interested in the design and preparation of polysaccharides for state-of-the-art applications. The book begins with an introductory section covering sources, chemistry, architectures, bioactivity, and chemical modifications of polysaccharides. Subsequent parts of the book are organized by field, with chapters focusing on specific applications across food, medicine, and the environment. This is an extremely valuable book for researchers, scientists, and advanced students in biopolymers, polymer science, polymer chemistry, biomaterials, materials science, biotechnology, biomedical engineering, cosmetics, medicine, food science, and environmental science. This important class of biopolymer can offer attractive properties and modification potential, enabling its use in groundbreaking areas across food, medical, and environmental fields. The book will be of interest to scientists, R&D professionals, designers, and engineers who utilize polysaccharide-based materials.
Smart Polymer Nanocomposites: Biomedical and Environmental Applications presents the latest information on smart polymers and their promising application in various fields, including their role in delivery systems for drugs, tissue engineering scaffolds, cell culture sports, bioseparation, and sensors or actuator systems.
Sustainable Materials for Next Generation Energy Devices: Challenges and Opportunities presents the latest state-of-the-art knowledge and innovation related to environmentally-friendly functional materials that can be developed for, and employed in, producing a feasible next generation of energy storage and conversion devices. The book is broken up into three sections, covering Energy Storage, Energy Conversion and Advanced Concepts. It will be an important reference for researchers, engineers and students who want to gain extensive knowledge in green and/or sustainable functional materials and their applications.
Predictive Filtering for Microsatellite Control Systems introduces technological design, modeling, stability analysis, predictive filtering, state estimation problem and real-time operation of spacecraft control systems in aerospace engineering. The book gives a systematically and almost self-contained description of the many facets of envisaging, designing, implementing or experimentally exploring predictive filtering for spacecraft control systems, along with the adequate designs of integrated modeling, dynamics, state estimation, and signal processing of spacecrafts and nonlinear systems.
Since delays are present in 99% of industrial processes, Control Strategy for Time-delay Systems covers all the important features of real-world practical applications which will be valuable to practicing engineers and specialists The book presents the views of the editors on promising research directions and future industrial applications in this area. Although the fundamentals of time-delay systems are discussed, the book focuses on the advanced modelling and control of such systems and will provide the analysis and test (or simulation) results of nearly every technique described in the book For this purpose, highly complex models are introduced to describe the mentioned new applications which are characterized by time-varying delays with intermittent and stochastic nature, several types of nonlinearities, and the presence of different time-scales. Researchers, practitioners and PhD students will gain insights into the prevailing trends in design and operation of real-time control systems, reviewing the shortcomings and future developments concerning the practical system issues such as standardization, protection and design.
The Effect of Long Term Thermal Exposure on Plastics and Elastomers, Second Edition brings together a wide range of essential data on the effect of long-term thermal exposure on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. This second edition has been thoroughly revised to include the latest data and materials. This highly valuable handbook will support engineers, product designers, R&D professionals, and scientists who are working on plastics products or parts for high temperature environments across a range of industries. This readily available data will make it easy for practitioners to learn about plastic materials and their long- term thermal exposure without having to search the general literature or depend on suppliers. This book will also be of interest to researchers and advanced students in plastics engineering, polymer processing, coatings, and materials science and engineering.
Size Effects in Engineering Mechanics and Manufacturing provides a detailed evaluation of size effects in mechanics, manufacturing and material sciences and their effects on related physical behaviors and phenomena. Sections address the physical aspects of size effects, including tension, compression, and bending deformation in mechanics, fatigue and damage behaviors, the mechanisms behind these effects, modeling techniques for determining the behavior and phenomena of size effects, practical applications of size effects in material sciences and micro-manufacturing, how size effects influence the process performance, process outcome, properties and quality of fabricated parts and components, and future size effects. This book provides not only a reference volume on size effects but also valuable applications for engineers, scientists, academics and research students involved in materials processing, manufacturing, materials science and engineering, engineering mechanics, mechanical engineering and the management of enterprises using materials processing technologies in the mass-production of related products.
Biopolymer-Based Nano Films: Applications in Food Packaging and Wound Healing covers a variety of biofilms, including active biofilms, nisin-silver nano-films, silk fibroin-based composite films, lignocellulose/cellulose-based biofilms, carboxymethyl cellulose-coated polypropylene, hybrid film-loaded antimicrobials, chitosan hybrid systems, pullulan, and biopolymers films. The applications of these nano-biofilms in different fields, particularly in food packaging, wound healing, and as potential antimicrobials against new, emerging, and multidrug resistant microbes are also discussed. This is an important resource for researchers in the fields of pharmacology, nanotechnology, microbiology, biotechnology, and for clinicians. The possibility of associating nanotechnology with biotechnology helps with the creation of innovative new products and the development of processes at the molecular level. Within this context, nanobiotechnology advances and revolutionizes several scientific fields. In the development of new technologies and products, it is also necessary to develop "platforms" that allow the specific application and delivery of compounds/actives in a controlled, specific and non-toxic way.
Plasticity of Metallic Materials presents a rigorous framework for description of plasticity phenomena, classic and recent models for isotropic and anisotropic materials, new original analytical solutions to various elastic/plastic boundary value problems and new interpretations of mechanical data based on these recent models. The book covers models for metals with both cubic and hexagonal crystal structures, presents the mechanical tests required to determine the model parameters, various identification procedures, verification, and validation tests, and numerous applications to metal forming.
Carbon and glass fibre reinforced composite materials have been used for many years in several different types of applications. However, these conventional composites are derived from non-renewable reinforcements and they pose a significant threat to the environment. Government legislation and consumer behaviour have recently forced many industries to adapt sustainable composites. Industries such as automotive, marine and aerospace are now seeking sustainable lightweight composites with the aim to reduce the overall weight of the components with enhanced materials and design aspects. Therefore, there is high demand on research for the development of sustainable lightweight composites. This book presents a comprehensive review of lightweight composites with the central aim to increase their use in key industrial sectors such as automotive, marine and aerospace. There is no such book currently available that is dedicated to sustainable lightweight applications covering important topics such as key drivers for lightweight composites, mechanical properties, damage characterisation, durability and environmental aspects. Key topics that are addressed include: The roles of reinforcements and matrices in composite materials Sustainable natural fibre reinforcements and their morphological structures Lightweight applications and properties requirements Design, manufacturing processes and their effects on properties Testing and damage characterisation of composite materials Sustainable composites and techniques for property enhancement Future trends and challenges for sustainable composites in lightweight applications It will be a valuable reference resource for those working in material Science, polymer science, materials engineering, and industries involved in the manufacture of automotive and aerospace components from lightweight composite materials.
Biocomposite and Synthetic Composites for Automotive Applications provides a detailed review of advanced macro and nanocomposite materials and structures, and discusses their use in the transport industry, specifically for automotive applications. This book covers materials selection, properties and performance, design solutions, and manufacturing techniques. A broad range of different material classes are reviewed with emphasis on advanced materials and new research pathways where composites can be derived from agricultural waste in the future, as well as the development and performance of hybrid composites. The book is an essential reference resource for those researching materials development and industrial design engineers who need a detailed understanding of materials usage in transport structures. Life Cycle Assessment (LCA) analysis of composite products in automotive applications is also discussed, and the effect of different fiber orientation on crash performance. Synthetic/natural fiber composites for aircraft engine fire-designated zones are linked to automotive applications. Additional chapters include the application and use of magnesium composites compared to biocomposites in the automotive industry; autonomous inspection and repair of aircraft composite structures via vortex robot technology and its application in automotive applications; composites in a three-wheeler (tuk tuk); and thermal properties of composites in automotive applications.
Constitutive Modeling of Engineering Materials provides an extensive theoretical overview of elastic, plastic, damage, and fracture models, giving readers the foundational knowledge needed to successfully apply them to and solve common engineering material problems. Particular attention is given to inverse analysis, parameter identification, and the numerical implementation of models with the finite element method. Application in practice is discussed in detail, showing examples of working computer programs for simple constitutive behaviors. Examples explore the important components of material modeling which form the building blocks of any complex constitutive behavior.
Laser Annealing Processes in Semiconductor Technology: Theory, Modeling and Applications in Nanoelectronics synthesizes the scientific and technological advances of laser annealing processes for current and emerging nanotechnologies. The book provides an overview of the laser-matter interactions of materials and recent advances in modeling of laser-related phenomena, with the bulk of the book focusing on current and emerging (beyond-CMOS) applications. Reviewed applications include laser annealing of CMOS, group IV semiconductors, superconducting materials, photonic materials, 2D materials. This comprehensive book is ideal for post-graduate students, new entrants, and experienced researchers in academia, research and development in materials science, physics and engineering.
Ice-Houses: Energy, Architecture and Sustainability presents new and novel technologies and approaches surrounding daily and seasonal ice storage, along with discussions on passive cooling and natural technologies using different methods, including heat pumps. The book covers different aspects of ice-houses and cold energy production, storage and utilization. By addressing various issues connected to the technology and structure of traditional ice-houses and natural and artificial ice making, this refences looks at new technological approaches for the reduction of electrical energy consumption in buildings. Users will find this to be a comprehensive overview of ice house storage that includes worked examples and global case studies. It is an essential resource for researchers and engineers looking to advance their understanding of this method of thermal storage.
Macromolecular Engineering: Design, Synthesis and Application of Polymers explores the role of macromolecular engineering in the development of polymer systems with engineered structures that offer the desired combination of properties for advanced applications. This book is organized into sections covering theory and principles, science and technology, architectures and technologies, and applications, with an emphasis on the latest advances in techniques, materials, properties, and end uses - and including recently commercialized, or soon to be commercialized, designed polymer systems. The chapters are contributed by a group of leading figures who are actively researching in the field. This is an invaluable resource for researchers and scientists interested in polymer synthesis and design, across the fields of polymer chemistry, polymer science, plastics engineering, and materials science and engineering. In industry, this book supports engineers, R&D, and scientists working on polymer design for application areas such as biomedical and healthcare, automotive and aerospace, construction and consumer goods.
Functional Tactile Sensors: Materials, Devices and Integrations focuses on the subject of novel materials design and device integration of tactile sensors for functional applications. The book addresses the design, materials characteristics, device operation principles, specialized device application and mechanisms of the latest reported tactile sensors. The emphasis of the book lies in the materials science aspects of tactile sensors-understanding the relationship between material properties and device performance. It will be an ideal resource for researchers working in materials science, engineering and physics.
Handbook of Nanomaterials for Intelligent Sensing Applications provides insights into the production of nanosensors and their applications. The book takes an interdisciplinary approach, showing how nano-enhanced sensing technology is being used in a variety of industry sectors and addressing related challenges surrounding the production, fabrication and application of nanomaterials-based sensors at both experimental and theoretical levels. This book is an important reference source for materials scientists and engineers who want to learn more about how nanomaterials are being used to enhance sensing products and devices for a variety of industry sectors. The pof miniaturized device components and engineering systems of micro- and nanoscale is beyond the capability of conventional machine tools. The production of intelligent sensors at nanometer scale presents great challenges to engineers in design and manufacture. The manufacturing of nano-scaled devices and components involves isolation, transportation and re-assembly of atoms and molecules. This nanomachining technology involves not only physical-chemical processes as in the case of microfabrication, but it also involves application and integration of the principles of molecular biology.
Liutex and Its Applications in Turbulence Research reviews the history of vortex definition, provides an accurate mathematical definition of vortices, and explains their applications in flow transition, turbulent flow, flow control, and turbulent flow experiments. The book explains the term "Rortex" as a mathematically defined rigid rotation of fluids or vortex, which could help solve many longstanding problems in turbulence research. The accurate mathematical definition of the vortex is important in a range of industrial contexts, including aerospace, turbine machinery, combustion, and electronic cooling systems, so there are many areas of research that can benefit from the innovations described here. This book provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence. Important theory and methodologies used for developing these laws are described in detail, including: the classification of the conventional turbulent boundary layer concept based on proper velocity scaling; the methodology for identification of the scales of velocity, temperature, and length needed to establish the law; and the discovery, proof, and strict validations of the laws, with both Reynolds and Prandtl number independency properties using DNS data. The establishment of these statistical laws is important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence.
Biopolymers and Their Industrial Applications: From Plant, Animal, and Marine Sources to Functional Products is a detailed guide to the use of biopolymers for advanced applications across a range of key industries. In terms of processing and cost, bio-based polymers are becoming increasingly viable for an ever-broadening range of novel industrial applications. The book begins with an overview of biopolymers, explaining resources, demands, sustainability, life cycle assessment (LCA) modeling and simulation, and classifications. Further in-depth chapters explore the latest techniques and methodologies for isolation and physicochemical characterization, materials selection, and processing for blends and composites. Chapters 6 to 14 each focus on the preparation and applications of biopolymers in a specific industrial area, including food science and nutraceuticals, medicine and pharmaceuticals, textiles, cosmeceutical, packaging, adhesives and automotive, 3D printing, super capacitor and energy storage devices, and environmental applications. The final chapter compares and analyzes biopolymers alongside synthetic polymers, also offering valuable insight into social, economic, and environmental aspects. This is an essential resource for those seeking to understand, research, or utilize biopolymers in industrial applications. This includes researchers, scientists, and advanced students working in biopolymers, polymer science, polymer chemistry, biomaterials, materials science, nanotechnology, composites, and biotechnology. This is a highly valuable book for scientists, R&D professionals, designers, and engineers across multiple industries and disciplines, who are looking to utilize biopolymers for components and products.
Advanced Joining Processes: Welding, Plastic Deformation, and Adhesion brings together a range of advanced thermal, mechanical, and chemical methods of joining, offering an up-to-date resource for those looking to understand and utilize the very latest techniques. Efficient joining techniques are critical to a range of innovative applications, with technology in constant development. The first section of the book provides in-depth information on advanced welding techniques, including friction stir, explosive, ultrasonic, laser, electron beam, and computational weld analysis and fatigue of structures. The second section highlights key developments in joining by plastic deformation, adhesive bonding, and hybrid joining. The coverage of each technique is supported by practical guidance, detailed analysis, and finite element simulations. This is an essential reference for researchers and advanced students in joining, welding, adhesion, materials processing, mechanical engineering, plastics engineering, manufacturing, civil engineering, and automotive/aerospace engineering, as well as engineers, scientists, and R&D professionals, using joining, welding, and adhesion methods, across a range of industries. |
You may like...
Sustainable Composites for Aerospace…
Mohammad Jawaid, Mohamed Thariq
Paperback
Comprehensive Nuclear Materials
Rudy Konings, Roger Stoller
Hardcover
R78,910
Discovery Miles 789 100
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Material Modeling with the Visco-Plastic…
Carlos N. Tome, Ricardo A. Lebensohn
Paperback
R5,403
Discovery Miles 54 030
|