Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials
This book describes the development of portable, wearable, and highly customizable hand exoskeletons to aid patients suffering from hand disabilities. It presents an original approach for the design of human hand motion assistance devices that relies on (i) an optimization-based kinematic scaling procedure, which guarantees a significant adaptability to the user's hands motion, and (ii) a topology optimization-based design methodology, which allowed the design of a lightweight, comfortable device with a high level of performance. The book covers the whole process of hand exoskeleton development, from establishing a new design strategy, to the construction and testing of hand exoskeleton prototypes, using additive manufacturing techniques. As such, it offers timely information to both researchers and engineers developing human motion assistance systems, especially wearable ones.
This book focuses on how to keep blast furnaces running stably and smoothly with low consumption and long operating life spans. Assessing and adjusting blast furnace performance are key to operation. The book describes in detail cases of both successful and failed blast furnace operation. It also demonstrates various phenomena and "symptoms" in the smelting process that have rarely been studied before, e.g. abnormal gas distribution, bending loss of tuyere, slag crust fall-off, blast furnace thickening, and hearth accumulation. As such, it will help readers understand internal phenomena in blast furnaces, providing a basis for developing intelligent control and management systems.
Based on the idea of a universal rule for problem solving, the book suggests that the "System-Fuzzy Approach (SFA)" Model can be applied to various complex real-world problems. It is the first book for problem solving in complicated problems with a universal project management tool. Systematic searching is an essential step in identifying the right direction in problem solving; and the fuzzy steps in concrete problem solving reflect the flexibility and compromises involved in the process. Nevertheless, the fuzzy steps also demonstrate human beings' impressively flexible problem-solving skills. Simulating human decision-making processes based on fuzzy information processing is essential in our digital era, in which many problems need to be solved by means of artificial intelligence; hence the Fuzzy-AI Model emerged. As a universal rule and tool, it can be applied to a broad range of real-world problems. Offering a valuable guide to fuzzy decision-making, this book is intended for researchers, scientists and graduate students in the fields of Engineering, Economics, Sociology, Managerial Science, Project Management etc.
This edited book presents scientific results of the International Semi-Virtual Workshop on Data Science and Digital Transformation in the Fourth Industrial Revolution (DSDT 2020) which was held on October 15, 2020, at Soongsil University, Seoul, Korea. The aim of this workshop was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The workshop organizers selected the best papers from those papers accepted for presentation at the workshop. The papers were chosen based on review scores submitted by members of the program committee and underwent further rigorous rounds of review. From this second round of review, 17 of the conference's most promising papers are then published in this Springer (SCI) book and not the conference proceedings. We impatiently await the important contributions that we know these authors will bring to the field of computer and information science.
The textile waste water is well known to contain many detrimental impacts in terms of its pollutants and the issues pertaining to its discharged without being untreated, or even discharged without meeting all stipulated parameters. There is an ample amount of advancements in treating textile waste water in a sustainable way and this book comprehends the same with eight insightful chapters. The aim of this book is to deal with the advances in sustainable waste water treatments with topics Conjugated Polymer Coated Novel Bio-adsorbents for Wastewater Treatment , Advanced Oxidation Processes (AOP) - Effective innovative treatment methods to degrade textile dye effluent, etc.
This book gathers the latest advances, innovations, and applications in the field of multibody and mechatronic systems. Topics addressed include the analysis and synthesis of mechanisms; dynamics of multibody systems; design algorithms for mechatronic systems; robots and micromachines; experimental validations; theory of mechatronic simulation; mechatronic systems for rehabilitation and assistive technologies; mechatronic systems for energy harvesting; virtual reality integration in multibody and mechatronic systems; multibody design in robotic systems; and control of mechatronic systems. The contents reflect the outcomes of the 7th International Symposium on Multibody Systems and Mechatronics (7th MuSMe) in 2020, within the framework of the FEIbIM Commission for Robotics and Mechanisms and IFToMM Technical Committees for Multibody Dynamics and for Robotics and Mechatronics.
This book presents new approaches to logistics solutions in global environments, with a special focus on collaborative logistics and intermodality. Contributions in this book are linked to two major initiatives in global logistics - H2020 MSCA-RISE-EU project EC-Asia Research Network on Integration of Global and Local Agri-Food Supply Chains Towards Sustainable Food Security (GOLF), and the International Conference on Logistics & Supply Chain (CiLOG). Topics covered in this book are: global logistics environments in manufacturing industries, key logistic decision-making parameters, global logistics management and its impact on container logistics processes, logistic market clusters and many more.
This monograph has arisen out of a number of attempts spanning almost five decades to understand how one might examine the evolution of densities in systems whose dynamics are described by differential delay equations. Though the authors have no definitive solution to the problem, they offer this contribution in an attempt to define the problem as they see it, and to sketch out several obvious attempts that have been suggested to solve the problem and which seem to have failed. They hope that by being available to the general mathematical community, they will inspire others to consider-and hopefully solve-the problem. Serious attempts have been made by all of the authors over the years and they have made reference to these where appropriate.
This book offers a comprehensive overview of recently developed space multi-tethers, such as maneuverable space tethered nets and space tethered formation. For each application, it provides detailed derivatives to describe and analyze the mathematical model of the system, and then discusses the design and proof of different control schemes for various problems. The dynamics modeling presented is based on Newton and Lagrangian mechanics, and the book also introduces Hamilton mechanics and Poincare surface of section for dynamics analysis, and employs both centralized and distributed controllers to derive the formation question of the multi-tethered system. In addition to the equations and text, it includes 3D design drawings, schematic diagrams, control scheme blocks and tables to make it easy to understand. This book is intended for researchers and graduate students in the fields of astronautics, control science, and engineering.
This book includes selected, peer-reviewed contributions from the 2018 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2018, held in Busan, South Korea, 9-11 August 2018. Focusing on manufacturing techniques, physics, mechanics, and applications of modern materials with special properties, it covers a broad spectrum of nanomaterials and structures, ferroelectrics and ferromagnetics, and other advanced materials and composites. The authors discuss approaches and methods in nanotechnology; newly developed, environmentally friendly piezoelectric techniques; and physical and mechanical studies of the microstructural and other properties of materials. Further, the book presents a range of original theoretical, experimental and computational methods and their application in the solution of various technological, mechanical and physical problems. Moreover, it highlights modern devices demonstrating high accuracy, longevity and the ability to operate over wide temperature and pressure ranges or in aggressive media. The developed devices show improved characteristics due to the use of advanced materials and composites, opening new horizons in the investigation of a variety of physical and mechanical processes and phenomena.
This book presents the results of a European-Chinese collaborative research project, Manipulation of Reynolds Stress for Separation Control and Drag Reduction (MARS), including an analysis and discussion of the effects of a number of active flow control devices on the discrete dynamic components of the turbulent shear layers and Reynolds stress. From an application point of view, it provides a positive and necessary step to control individual structures that are larger in scale and lower in frequency compared to the richness of the temporal and spatial scales in turbulent separated flows.
This book uses a novel concept to teach the finite element method, applying it to solid mechanics. This major conceptual shift takes away lengthy theoretical derivations in the face-to-face interactions with students and focuses on the summary of key equations and concepts; and to practice these on well-chosen example problems. For this new, 2nd edition, many examples and design modifications have been added, so that the learning-by-doing features of this book make it easier to understand the concepts and put them into practice. The theoretical derivations are provided as additional reading and students must study and review the derivations in a self-study approach. The book provides the theoretical foundations to solve a comprehensive design project in tensile testing. A classical clip-on extensometer serves as the demonstrator on which to apply the provided concepts. The major goal is to derive the calibration curve based on different approaches, i.e., analytical mechanics and based on the finite element method, and to consider further design questions such as technical drawings, manufacturing, and cost assessment. Working with two concepts, i.e., analytical and computational mechanics strengthens the vertical integration of knowledge and allows the student to compare and understand the different concepts, as well as highlighting the essential need for benchmarking any numerical result.
[FIRST EDITION] This accessible textbook presents an introduction to computer vision algorithms for industrially-relevant applications of X-ray testing. Features: introduces the mathematical background for monocular and multiple view geometry; describes the main techniques for image processing used in X-ray testing; presents a range of different representations for X-ray images, explaining how these enable new features to be extracted from the original image; examines a range of known X-ray image classifiers and classification strategies; discusses some basic concepts for the simulation of X-ray images and presents simple geometric and imaging models that can be used in the simulation; reviews a variety of applications for X-ray testing, from industrial inspection and baggage screening to the quality control of natural products; provides supporting material at an associated website, including a database of X-ray images and a Matlab toolbox for use with the book's many examples.
What are the physical mechanisms that underlie the efficient generation and transfer of energy at the nanoscale? Nature seems to know the answer to this question, having optimised the process of photosynthesis in plants over millions of years of evolution. It is conceivable that humans could mimic this process using synthetic materials, and organic semiconductors have attracted a lot of attention in this respect. Once an organic semiconductor absorbs light, bound pairs of electrons with positively charged holes, termed `excitons', are formed. Excitons behave as fundamental energy carriers, hence understanding the physics behind their efficient generation and transfer is critical to realising the potential of organic semiconductors for light-harvesting and other applications, such as LEDs and transistors. However, this problem is extremely challenging since excitons can interact very strongly with photons. Moreover, simultaneously with the exciton motion, organic molecules can vibrate in hundreds of possible ways, having a very strong effect on energy transfer. The description of these complex phenomena is often beyond the reach of standard quantum mechanical methods which rely on the assumption of weak interactions between excitons, photons and vibrations. In this thesis, Antonios Alvertis addresses this problem through the development and application of a variety of different theoretical methods to the description of these strong interactions, providing pedagogical explanations of the underlying physics. A comprehensive introduction to organic semiconductors is followed by a review of the background theory that is employed to approach the relevant research questions, and the theoretical results are presented in close connection with experiment, yielding valuable insights for experimentalists and theoreticians alike.
This is the proceedings of the IUTAM Symposium on Exploiting Nonlinear Dynamics for Engineering Systems that was held in Novi Sad, Serbia, from July 15th to 19th, 2018. The appearance of nonlinear phenomena used to be perceived as dangerous, with a general tendency to avoid them or control them. This perception has led to intensive research using various approaches and tailor-made tools developed over decades. However, the Nonlinear Dynamics of today is experiencing a profound shift of paradigm since recent investigations rely on a different strategy which brings good effects of nonlinear phenomena to the forefront. This strategy has a positive impact on different fields in science and engineering, such as vibration isolation, energy harvesting, micro/nano-electro-mechanical systems, etc. Therefore, the ENOLIDES Symposium was devoted to demonstrate the benefits and to unlock the potential of exploiting nonlinear dynamical behaviour in these but also in other emerging fields of science and engineering. This proceedings is useful for researchers in the fields of nonlinear dynamics of mechanical systems and structures, and in Mechanical and Civil Engineering.
This is the proceedings of the 2nd International Conference on Theoretical, Applied and Experimental Mechanics that was held in Corfu, Greece, June 23-26, 2019. It presents papers focusing on all aspects of theoretical, applied and experimental mechanics, including biomechanics, composite materials, computational mechanics, constitutive modeling of materials, dynamics, elasticity, experimental mechanics, fracture, mechanical properties of materials, micromechanics, nanomechanics, plasticity, stress analysis, structures, wave propagation. The papers update the latest research in their field, carried out since the last conference in 2018. This book is suitable for engineers, students and researchers who want to obtain an up-to-date view of the recent advances in the area of mechanics.
This book provides insight into research and development of key aerospace materials that have enabled some of the most exciting air and space technologies in recent years. The stories are shared with you by the women who experienced them, those engineers and scientists in the labs, on the shop floors, or on the design teams contributing to the realization of these technologies. Their work contributes to the world in the challenging and vital field of aerospace materials, and their stories seethe with a pride and a passion for the opportunity to make these important contributions. As an important part of the Women in Science and Engineering book series, the work highlights the contribution of women leaders in Aerospace Materials, inspiring women and men, girls and boys to enter and apply themselves to secure our future in an increasingly connected world.
|
You may like...
Sustainable Nanotechnology and the…
Najm Shamim, Virender K. Sharma
Hardcover
R5,423
Discovery Miles 54 230
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Aggregation-Induced Emission: Materials…
Michiya Fujiki, bin Liu, …
Hardcover
R4,787
Discovery Miles 47 870
Productivity with Health, Safety, and…
Lakhwinder Pal Singh, Arvind Bhardwaj, …
Hardcover
R5,244
Discovery Miles 52 440
The Science and Technology of Silicones…
Stephen J. Clarson, John J Fitzgerald, …
Hardcover
R2,525
Discovery Miles 25 250
Intelligent Materials for Controlled…
Steven M Dinh, John DeNuzzio, …
Hardcover
R2,292
Discovery Miles 22 920
|