![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials
The planning and control of the production process represents a fundamental part of modern manufacturing technology. This book provides an essential introduction to the basic principles involved and is specially written for BTEC HNC/D programmes in mechanical and production engineering. The aim is to give the reader a practical and comprehensive appreciation and understanding of the ways in which manufacturing companies are organised; the nature and diversity of engineering products; the organisation of production and the planning and control of production. Production Planning and Control covers the BTEC units Control of Manu639-5 Manufacture U38/188 and Production Planning and Control U38/189.
This book reports the most recent, advanced, successful, and real applications of ergonomics in order to improve the human well-being and performance in a short term, as well as the organizational performance in a long term. The book is organized as follows: Physical Ergonomics. This section reports case studies where physical risk factors are presented in the workplace, such as physical risk factors including uncomfortable body postures, repetitive movements, force application, manual material handling, and physical environmental conditions. In addition, case studies must report applications from physical ergonomics methods, for instance, RULA, REBA, OWAS, NIOSH, JSI, Suzane Rodgers, ERIN, among others. Cognitive Ergonomics. This section reports the implementation of ergonomic tools, techniques, and methods in real case studies. These applications are aimed to know, decrease, and control cognitive and psychological risk factors, such as mental workload, information processing, situation awareness, human error identification, and interface analysis. These applications may include the following methods NASA-TLX, SWAT, CWA, SHERPA, HET, TAFEI, SAGAT, SART, SACRI, QUIS, SUMI, to mention a few of them. Macro-ergonomics. This section is focused on the analysis, design, and evaluation of work systems. It reports case studies where risk factors are beyond a specific workstation. These risk factors may include supervision styles, teamwork management, task variety, social relationships, organizational culture, organizational communication, technology, work schedules, and motivation, among others. In addition, case studies report the application of macro-ergonomic methods, such as MOQS, focus group, participatory ergonomics, HITOP, MAS, and MEAD, among others.
This book summarizes the research being pursued as part of the Erasmus+ CBHE KA2 project entitled "Development of master curricula for natural disasters risk management in Western Balkan countries" (NatRisk), which aims to educate experts on the prevention and management of natural disasters in the Western Balkan region in line with national and EU policies. The project has successfully developed and implemented master curricula and educational training in the field of natural disasters risk management, and a methodology for the identification and prevention of natural disasters. Consisting of 11 chapters, the book analyzes and discusses topics such as risk assessment tools and quality methods, the different approaches for civil-military collaboration, natural disasters risk management in Bosnia and Herzegovina, leadership models for managing crises resulting from natural disasters, natural disasters in industrial areas, natural risk management in geotechnics, flood risk modeling, adaptive neuro-fuzzy inference models for flood prediction, collapse prediction of masonry arches, an algorithm for fire truck dispatch in emergency situations, and processing drought data in a GIS environment.
This book highlights key recent developments in air conditioning technologies for cooling and dehumidification with the specific objectives to improve energy efficiency and to minimize environmental impact. Today, air conditioning, comprising cooling and dehumidification, is a necessity in commercial and residential buildings and even in many industrial processes. This book provides key update on recent developments in air conditioning systems, cooling cycles and innovative cooling/dehumidification technologies. Key technologies related to cooling include heat-driven absorption and adsorption cooling and water-based dew point evaporative cooling. Technologies connected with dehumidification involve new generations of adsorbent-desiccant dehumidifiers, liquid-based desiccants and membranes that sieve out water vapor from air. Losses in cooling cycles and thermo-economic analysis for a sustainable economy are also judiciously documented.
This book provides an up-to-date overview on the membrane technology for the drinking water treatment. The applications of PVDF-TiO2 nanowire hybrid ultrafiltration membrane, nanofiltration membrane, forward osmosis membrane, etc. in water treatment are discussed in detail. With abundant practical examples, the book is an essential reference for scientists, students and engineers in municipal engineering, environmental engineering, chemical engineering, environmental chemistry and material science.
This book reviews the current knowledge on tunable hydrogels, including the range of different materials and applications, as well as the existing challenges and limitations in the field. It covers various aspects of the material design, particularly highlighting biological responsiveness, degradability and responsiveness to external stimuli. In this book, readers will discover original research data and state-of-the-art reviews in the area of hydrogel technology, with a specific focus on biotechnology and medicine. Written by leading experts, the contributions outline strategies for designing tunable hydrogels and offer a detailed evaluation of the physical and synthetic methods currently employed to achieve specific hydrogel properties and responsiveness. This highly informative book provides important theoretical and practical insights for scholars and researchers working with hydrogels for biomedical and biotechnological applications.
This book deals with mathematical modeling, namely, it describes the mathematical model of heat transfer in a silicon cathode of small (nano) dimensions with the possibility of partial melting taken into account. This mathematical model is based on the phase field system, i.e., on a contemporary generalization of Stefan-type free boundary problems. The approach used is not purely mathematical but is based on the understanding of the solution structure (construction and study of asymptotic solutions) and computer calculations. The book presents an algorithm for numerical solution of the equations of the mathematical model including its parallel implementation. The results of numerical simulation concludes the book. The book is intended for specialists in the field of heat transfer and field emission processes and can be useful for senior students and postgraduates.
The scientific theme of the book concerns "Manufacturing as a Service (MaaS)" which is developed in a layered cloud networked manufacturing perspective, from the shop floor resource sharing model to the virtual enterprise collaborative model, by distributing the cost of the manufacturing infrastructure - equipment, software, maintenance, networking - across all customers. MaaS is approached in terms of new models of service-oriented, knowledge-based manufacturing systems optimized and reality-aware, that deliver value to customer and manufacturer via Big data analytics, Internet of Things communications, Machine learning and Digital twins embedded in Cyber-Physical System frameworks. From product design to after-sales services, MaaS relies on the servitization of manufacturing operations such as: Design as a Service, Predict as a Service or Maintain as a service. The general scope of the book is to foster innovation in smart and sustainable manufacturing and logistics systems and in this context to promote concepts, methods and solutions for the digital transformation of manufacturing through service orientation in holonic and agent-based control with distributed intelligence. The book's readership is comprised by researchers and engineers working in the manufacturing value chain area who develop and use digital control solutions in the 'Industry of the Future' vision. The book also addresses to master and Ph.D. students enrolled in Engineering Sciences programs.
This book highlights cutting-edge ecodesign research, covering product and service design, smart manufacturing, and social perspectives in ecodesign. Featuring selected papers presented at EcoDesign 2019: 11th International Symposium on Environmentally Conscious Design and Inverse Manufacturing, it also includes diverse, interdisciplinary approaches to foster ecodesign research and activities. In the context of Sustainable Development Goals (SDGs), it addresses the need for the manufacturing industry to design innovations for sustainable value creation, taking into account technological developments, legislation, and consumer lifestyles. Further, the book discusses the concept of circular economy, which originated in Europe and aims to increase resource efficiency by shifting away from the linear economy. Focusing on product life cycle design and management, smart manufacturing, circular economy, and business strategies, and providing useful approaches and solutions to these emerging concepts, this book is intended for both researchers and practitioners working in the broad field of ecodesign and sustainability.
Recent advances in scientific computing have caused the field of aerodynamics to change at a rapid pace, simplifying the design cycle of aerospace vehicles enormously - this book takes the readers from core concepts of aerodynamics to recent research, using studies and real-life scenarios to explain problems and their solutions. This book presents in detail the important concepts in computational aerodynamics and aeroacoustics taking readers from the fundamentals of fluid flow and aerodynamics to a more in-depth analysis of acoustic waves, aeroacoustics, computational modelling and processing. This book will be of use to students in multiple branches of engineering, physics and applied mathematics. Additionally, the book can also be used as a text in professional development courses for industry engineers and as a self-help reference for active researchers in both academia and the industry.
This book presents a comprehensive introduction to the field of structural vibration reduction control, but may also be used as a reference source for more advanced topics. The content is divided into four main parts: the basic principles of structural vibration reduction control, structural vibration reduction devices, structural vibration reduction design methods, and structural vibration reduction engineering practices. As the book strikes a balance between theoretical and practical aspects, it will appeal to researchers and practicing engineers alike, as well as graduate students.
This book discusses systems of damage detection and structural health monitoring in mechanical, civil, and aerospace structures. It utilizes principles of fuzzy logic, probability theory, and signal processing to develop systems and approaches that are robust in the presence of both noise in the data and variations in properties of materials which are intrinsic to the process of mass production. This volume will be useful to graduate students, researchers, and engineers working in this area, especially those looking to understand and address model uncertainty in their algorithms.
This book presents machine learning as a set of pre-requisites, co-requisites, and post-requisites, focusing on mathematical concepts and engineering applications in advanced welding and cutting processes. It describes a number of advanced welding and cutting processes and then assesses the parametrical interdependencies of two entities, namely the data analysis and data visualization techniques, which form the core of machine learning. Subsequently, it discusses supervised learning, highlighting Python libraries such as NumPy, Pandas and Scikit Learn programming. It also includes case studies that employ machine learning for manufacturing processes in the engineering domain. The book not only provides beginners with an introduction to machine learning for applied sciences, enabling them to address global competitiveness and work on real-time technical challenges, it is also a valuable resource for scholars with domain knowledge.
This book relates research being implemented in three main research areas: secure connectivity and intelligent systems, real-time analytics and manufacturing knowledge and virtual manufacturing. Manufacturing SMEs and MNCs want to see how Industry 4.0 is implemented. On the other hand, groundbreaking research on this topic is constantly growing. For the aforesaid reason, the Singapore Agency for Science, Technology and Research (A*STAR), has created the model factory initiative. In the model factory, manufacturers, technology providers and the broader industry can (i) learn how I4.0 technologies are implemented on real-world manufacturing use-cases, (ii) test process improvements enabled by such technologies at the model factory facility, without disrupting their own operations, (iii) co-develop technology solutions and (iv) support the adoption of solutions at their everyday industrial operation. The book constitutes a clear base ground not only for inspiration of researchers, but also for companies who will want to adopt smart manufacturing approaches coming from Industry 4.0 in their pathway to digitization.
This book deals with the electro-chemo-mechanical properties characteristic of and unique to solid electrode surfaces, covering interfacial electrochemistry and surface science. Electrochemical reactions such as electro-sorption, electro-deposition or film growth on a solid electrode induce changes in surface stress or film stress that lead to transformation of the surface phase or alteration of the surface film. The properties of solid electrode surfaces associated with the correlation between electrochemical and mechanical phenomena are named "electro-chemo-mechanical properties". The book first derives the surface thermodynamics of solid electrodes as fundamentals for understanding the electro-chemo-mechanical properties. It also explains the powerful techniques for investigating the electro-chemo-mechanical properties, and reviews the arguments for derivation of surface thermodynamics of solid electrodes. Further, based on current experimental findings and theories, it discusses the importance of the contribution of surface stress to the transformation of surface phases, such as surface reconstruction and underpotential deposition in addition to the stress evolution during film growth and film reduction. Moreover, the book describes the nano-mechanical properties of solid surfaces measured by nano-indentation in relation to the electro-chemo-mechanical properties. This book makes a significant contribution to the further development of numerous fields, including electrocatalysis, materials science and corrosion science.
This book focuses on the latest scientific and technological advancements in the field of railway turnout engineering. It offers a holistic approach to the scientific investigation of the factors and mechanisms determining performance degradation of railway switches and crossings (S&Cs), and the consequent development of condition monitoring systems that will enable infrastructure managers to transition towards the implementation of predictive maintenance. The book is divided into three distinct parts. Part I discusses the modelling of railway infrastructure, including switch and crossing systems, while Part II focuses on metallurgical characterization. This includes the microstructure of in-field loaded railway steel and an analysis of rail screw failures. In turn, the third and final part discusses condition monitoring and asset management. Given its scope, the book is of interest to both academics and industrial practitioners, helping them learn about the various challenges characterizing this engineering domain and the latest solutions to properly address them.
This thesis is concerned with flows through cascades, i.e. periodic arrays of obstacles. Such geometries are relevant to a range of physical scenarios, chiefly the aerodynamics and aeroacoustics of turbomachinery flows. Despite the fact that turbomachinery is of paramount importance to a number of industries, many of the underlying mechanisms in cascade flows remain opaque. In order to clarify the function of different physical parameters, the author considers six separate problems. For example, he explores the significance of realistic blade geometries in predicting turbomachinery performance, and the possibility that porous blades can achieve noise reductions. In order to solve these challenging problems, the author deploys and indeed develops techniques from across the spectrum of complex analysis: the Wiener-Hopf method, Riemann-Hilbert problems, and the Schottky-Klein prime function all feature prominently. These sophisticated tools are then used to elucidate the underlying mathematical and physical structures present in cascade flows. The ensuing solutions greatly extend previous works and offer new avenues for future research. The results are not of simply academic value but are also useful for aircraft designers seeking to balance aeroacoustic and aerodynamic effects.
This book highlights the fundamentals of ferrites and multiferroic materials with special attention to their structure, types, and properties. It presents a comprehensive survey about ferrite and multiferroic materials, in areas significant to research and development in academia as well as in industry. The book discusses various types of methods applied for their synthesis and characterizations. This book is concerned with the fascinating class of materials with the promise for wide-ranging applications, including electromagnets, magnetic fluid hyperthermia, antenna applications, memory devices, switching circuits, bio-medical applications, actuators, magnetic field sensors and water purification, etc.
This book deals with key aspects of modelling, deposition and characterization of thin solid films. The main attention is paid to the physical vacuum deposition methods and particularly to the magnetron sputtering. Measurement methods for optical and electrical properties of thin films, that are described in the book, are based on the equipment situated in the thin-films laboratory of the Holon Institute of Technology (HIT). The book is written based on Dr Axelevitch's long experience (more than 30 years) in the field. It is mainly intended for students of microelectronics, electrooptics and nanotechnology specialties, as well as for practical engineers.
This book presents the stream-tube method (STM), a method offering computational means of dealing with the two- and three-dimensional properties of numerous incompressible materials in static and dynamic conditions. The authors show that the kinematics and stresses associated with the flow and deformation in such materials can be treated by breaking the system down into simple computational sub-domains in which streamlines are straight and parallel and using one or two mapping functions in steady-state and non-steady-state conditions. The STM is considered for various problems in non-Newtonian fluid mechanics with different geometries. The book makes use of examples and applications to illustrate the use of the STM. It explores the possibilities of computation on simple mapped rectangular domains and three-dimensional parallel-piped domains under different conditions. Complex materials with memory are considered simply without particle tracking problems. Readers, including researchers, engineers and graduate students, with a foundational knowledge of calculus, linear algebra, differential equations and fluid mechanics will benefit most greatly from this book.
This study aid on numerical optimization techniques is intended for university undergraduate and postgraduate mechanical engineering students. Optimization procedures are becoming more and more important for lightweight design, where weight reduction can, for example in the case of automotive or aerospace industry, lead to lower fuel consumption and a corresponding reduction in operational costs as well as beneficial effects on the environment. Based on the free computer algebra system Maxima, the authors present procedures for numerically solving problems in engineering mathematics as well as applications taken from traditional courses on the strength of materials. The mechanical theories focus on the typical one-dimensional structural elements, i.e., springs, bars, and Euler-Bernoulli beams, in order to reduce the complexity of the numerical framework and limit the resulting design to a low number of variables. The use of a computer algebra system and the incorporated functions, e.g., for derivatives or equation solving, allows a greater focus on the methodology of the optimization methods and not on standard procedures. The book also provides numerous examples, including some that can be solved using a graphical approach to help readers gain a better understanding of the computer implementation. |
![]() ![]() You may like...
Elasticity and Geometry - From hair…
Basile Audoly, Yves Pomeau
Hardcover
R4,996
Discovery Miles 49 960
Scientific Basis for Nuclear Waste…
Lara Duro, Javier Gimenez, …
Hardcover
R2,039
Discovery Miles 20 390
Sustainable Nanotechnology and the…
Najm Shamim, Virender K. Sharma
Hardcover
R5,595
Discovery Miles 55 950
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Productivity with Health, Safety, and…
Lakhwinder Pal Singh, Arvind Bhardwaj, …
Hardcover
R5,410
Discovery Miles 54 100
Intelligent Materials for Controlled…
Steven M Dinh, John DeNuzzio, …
Hardcover
R2,375
Discovery Miles 23 750
Aggregation-Induced Emission: Materials…
Michiya Fujiki, bin Liu, …
Hardcover
R4,941
Discovery Miles 49 410
|