![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials
Size Effects in Engineering Mechanics and Manufacturing provides a detailed evaluation of size effects in mechanics, manufacturing and material sciences and their effects on related physical behaviors and phenomena. Sections address the physical aspects of size effects, including tension, compression, and bending deformation in mechanics, fatigue and damage behaviors, the mechanisms behind these effects, modeling techniques for determining the behavior and phenomena of size effects, practical applications of size effects in material sciences and micro-manufacturing, how size effects influence the process performance, process outcome, properties and quality of fabricated parts and components, and future size effects. This book provides not only a reference volume on size effects but also valuable applications for engineers, scientists, academics and research students involved in materials processing, manufacturing, materials science and engineering, engineering mechanics, mechanical engineering and the management of enterprises using materials processing technologies in the mass-production of related products.
New Materials in Civil Engineering provides engineers and scientists with the tools and methods needed to meet the challenge of designing and constructing more resilient and sustainable infrastructures. This book is a valuable guide to the properties, selection criteria, products, applications, lifecycle and recyclability of advanced materials. It presents an A-to-Z approach to all types of materials, highlighting their key performance properties, principal characteristics and applications. Traditional materials covered include concrete, soil, steel, timber, fly ash, geosynthetic, fiber-reinforced concrete, smart materials, carbon fiber and reinforced polymers. In addition, the book covers nanotechnology and biotechnology in the development of new materials.
A Practical Guide to Plastics Sustainability: Concept, Solutions, and Implementation is a groundbreaking reference work offering a broad, detailed and highly practical vision of the complex concept of sustainability in plastics. The book's aim is to present a range of potential pathways towards more sustainable plastics parts and products, enabling the reader to further integrate the idea of sustainability into their design process. It begins by introducing the context and concept of sustainability, discussing perceptions, drivers of change, key factors, and environmental issues, before presenting a detailed outline of the current situation with types of plastics, processing, and opportunities for improved sustainability. Subsequent chapters focus on the different possibilities for improved sustainability, offering a step-by-step technical approach to areas including design, properties, renewable plastics, and recycling and re-use. Each of these pillars are supported by data, examples, analysis and best practice guidance. Finally, the latest developments and future possibilities are considered.
Eco-efficient Pavement Construction Materials acquaints engineers with research findings on new eco-efficient pavement materials and how they can be incorporated into future pavements. Divided into three distinctive parts, the book emphasizes current research topics such as pavements with recycled waste, pavements for climate change mitigation, self-healing pavements, and pavements with energy harvesting potential. Part One considers techniques for recycling, Part Two reviews the contribution of pavements for climate change mitigation, including cool pavements, the development of new coatings for high albedo targets, and the design of pervious pavements. Finally, Part Three focuses on self-healing pavements, addressing novel materials and design and performance. Finally, the book discusses the case of pavements with energy harvesting potential, addressing different technologies on this field.
The Fundamentals and Applications of Light-Emitting Diodes: The Revolution in the Lighting Industry examines the evolution of LEDs, including a review of the luminescence process and background on solid state lighting. The book emphasizes phosphor-converted LEDs that are based on inorganic phosphors but explores different types of LEDs based on inorganic, organic, quantum dots, perovskite-structured materials, and biomaterials. A detailed description is included about the diverse applications of LEDs in fields such as lighting, displays, horticulture, biomedicine, and digital communication, as well as challenges that must be solved before using LEDs in commercial applications. Traditional light sources are fast being replaced by light-emitting diodes (LEDs). The fourth generation of lighting is completely dominated by LED luminaires. Apart from lighting, LEDs have extended their hold on other fields, such as digital communications, horticulture, medicine, space research, art and culture, display devices, and entertainment. The technological promises offered by LEDs have elevated them as front-runners in the lighting industry.
Multiscale Modeling of Additively Manufactured Metals: Application to Laser Powder Bed Fusion Process provides comprehensive coverage on the latest methodology in additive manufacturing (AM) modeling and simulation. Although there are extensive advances within the AM field, challenges to predictive theoretical and computational approaches still hinder the widespread adoption of AM. The book reviews metal additive materials and processes and discusses multiscale/multiphysics modeling strategies. In addition, coverage of modeling and simulation of AM process in order to understand the process-structure-property relationship is reviewed, along with the modeling of morphology evolution, phase transformation, and defect formation in AM parts. Residual stress, distortion, plasticity/damage in AM parts are also considered, with scales associated with the spatial, temporal and/or material domains reviewed. This book is useful for graduate students, engineers and professionals working on AM materials, equipment, process, development and modeling.
In the automotive industry, the need to reduce vehicle weight has given rise to extensive research efforts to develop aluminum and magnesium alloys for structural car body parts. In aerospace, the move toward composite airframe structures urged an increased use of formable titanium alloys. In steel research, there are ongoing efforts to design novel damage-controlled forming processes for a new generation of efficient and reliable lightweight steel components. All these materials, and more, constitute today's research mission for lightweight structures. They provide a fertile materials science research field aiming to achieve a better understanding of the interplay between industrial processing, microstructure development, and the resulting material properties. Advancements in the Processing, Characterization, and Application of Lightweight Materials provides the recent advancements in the lightweight mat materials processing, manufacturing, and characterization. This book identifies the need for modern tools and techniques for designing lightweight materials and addresses multidisciplinary approaches for applying their use. Covering topics such as numerical optimization, fatigue characterization, and process evaluation, this text is an essential resource for materials engineers, manufacturers, practitioners, engineers, academicians, chief research officers, researchers, students, and vice presidents of research in government, industry, and academia.
Bio-based Materials and Biotechnologies for Eco-efficient Construction fills a gap in the published literature, discussing bio-based materials and biotechnologies that are crucial for a more sustainable construction industry. With comprehensive coverage and contributions from leading experts in the field, the book includes sections on Bio-based materials and biotechnologies for infrastructure applications, Bio-based materials and biotechnologies for building energy efficiency, and other applications, such as using biotechnology to reduce indoor air pollution, for water treatment, and in soil decontamination. The book will be an essential reference resource for academic researchers, civil engineers, contractors working in construction works, postgraduate students and other professionals.
Digital controllers are part of nearly all modern personal, industrial, and transportation systems. Every senior or graduate student of electrical, chemical, or mechanical engineering should therefore be familiar with the basic theory of digital controllers. This new text covers the fundamental principles and applications of digital control engineering, with emphasis on engineering design. Fadali and Visioli cover analysis and design of digitally controlled systems and describe applications of digital control in a wide range of fields. With worked examples and Matlab applications in every chapter and many end-of-chapter assignments, this text provides both theory and practice for those coming to digital control engineering for the first time, whether as a student or practicing engineer.
Design for Additive Manufacturing is a complete guide to design tools for the manufacturing requirements of AM and how they can enable the optimization of process and product parameters for the reduction of manufacturing costs and effort. This timely synopsis of state-of-the-art design tools for AM brings the reader right up-to-date on the latest methods from both academia and industry. Tools for both metallic and polymeric AM technologies are presented and critically reviewed, along with their manufacturing attributes. Commercial applications of AM are also explained with case studies from a range of industries, thus demonstrating best-practice in AM design.
Multi-robot Exploration for Environmental Monitoring: The Resource Constrained Perspective provides readers with the necessary robotics and mathematical tools required to realize the correct architecture. The architecture discussed in the book is not confined to environment monitoring, but can also be extended to search-and-rescue, border patrolling, crowd management and related applications. Several law enforcement agencies have already started to deploy UAVs, but instead of using teleoperated UAVs this book proposes methods to fully automate surveillance missions. Similarly, several government agencies like the US-EPA can benefit from this book by automating the process. Several challenges when deploying such models in real missions are addressed and solved, thus laying stepping stones towards realizing the architecture proposed. This book will be a great resource for graduate students in Computer Science, Computer Engineering, Robotics, Machine Learning and Mechatronics.
Sustainable Technologies for Fashion and Textiles combines the latest academic research and industrial practices to shed light on a wide range of activities that influence how the textiles industry affects the natural environment. Pressure from regulators, customers and other stakeholders has pressed companies to translate general sustainability concepts and ideas into business practices. This is leading to improvements in how the industry consumes water, electricity and chemicals, and to a reduction in the amount of waste generated by textile processes. This book groups approaches to these topics under four themes, fiber, yarn and fabric production, chemical processing, garment manufacturing and recycling.
PROCESSING OF CERAMICS A firsthand account of the "transparent ceramics revolution" from one of the pioneers in the field Processing of Ceramics: Breakthroughs in Optical Materials is an in-depth survey of the breakthrough research and development of transparent ceramics, covering historical background, theory, manufacturing processes, and applications. Written by an internationally-recognized leader in the technology, this authoritative volume describes advances in optical grade ceramics over the past three decades--from the author's first demonstration of laser ceramics in Japan in 1991 to new applications of transparent ceramics such as ceramic jewels, wireless heating elements, and mobile device displays. The author provides numerous development examples of laser ceramics, crystal and ceramic scintillators, magneto-optic transparent ceramics, optical ceramic phosphors for solid state lighting, and more. Detailed chapters cover topics such as the technical problems of conventional translucent and transparent ceramics, the characteristics of scintillation materials, single crystal and ceramic scintillator fabrication and optimization, and solid-state crystal growth (SSCG) methods for single crystal ceramics. Processing of Ceramics: Outlines the author's 30 years of work in the area of transparent ceramics Provides a detailed history of the world's first ceramic laser development Demonstrates how laser oscillation using ceramic materials match or surpass high-quality single crystals Describes how innovative polycrystalline ceramics have transformed optical material development Includes extensive references, chapter introductions and summaries, and numerous graphs, tables, diagrams, and color images Processing of Ceramics is an invaluable resource for researchers, materials scientists, engineers, and other professionals across academic and industrial fields involved in the development and application of optical grade ceramics.
Wearable Bioelectronics presents the latest on physical and (bio)chemical sensing for wearable electronics. It covers the miniaturization of bioelectrodes and high-throughput biosensing platforms while also presenting a systemic approach for the development of electrochemical biosensors and bioelectronics for biomedical applications. The book addresses the fundamentals, materials, processes and devices for wearable bioelectronics, showcasing key applications, including device fabrication, manufacturing, and healthcare applications. Topics covered include self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors, epidermal electronics and other exciting applications.
Advances in Construction and Demolition Waste Recycling: Management, Processing and Environmental Assessment is divided over three parts. Part One focuses on the management of construction and demolition waste, including estimation of quantities and the use of BIM and GIS tools. Part Two reviews the processing of recycled aggregates, along with the performance of concrete mixtures using different types of recycled aggregates. Part Three looks at the environmental assessment of non-hazardous waste. This book will be a standard reference for civil engineers, structural engineers, architects and academic researchers working in the field of construction and demolition waste.
|
You may like...
Comprehensive Structural Integrity
Ferri M.H. Aliabadi, Winston (Wole) Soboyejo
Hardcover
R99,774
Discovery Miles 997 740
Nano-sized Multifunctional Materials…
Nguyen Hoa Hong
Paperback
Free-Surface Flow - Computational…
Nikolaos D. Katopodes
Paperback
Innovative Food Processing Technologies…
Kasiviswanathan Muthukumarappan, Kai Knoerzer
Hardcover
R38,876
Discovery Miles 388 760
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
|