![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials
Bone Repair Biomaterials: Regeneration and Clinical Applications, Second Edition, provides comprehensive reviews on materials science, engineering principles and recent advances. Sections review the fundamentals of bone repair and regeneration, discuss the science and properties of biomaterials used for bone repair, including metals, ceramics, polymers and composites, and discuss clinical applications and considerations, with chapters on such topics as orthopedic surgery, tissue engineering, implant retrieval, and ethics of bone repair biomaterials. This second edition includes more chapters on relevant biomaterials and a greatly expanded section on clinical applications, including bone repair applications in dental surgery, spinal surgery, and maxilo-facial and skull surgery. In addition, the book features coverage of long-term performance and failure of orthopedic devices. It will be an invaluable resource for researchers, scientists and clinicians concerned with the repair and restoration of bone.
Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites focuses on the advanced characterization techniques used for the analysis of composite materials developed from natural fiber/biomass, synthetic fibers and a combination of these materials used as fillers and reinforcements to enhance materials performance and utilization in automotive, aerospace, construction and building components. It will act as a detailed reference resource to encourage future research in natural fiber and hybrid composite materials, an area much in demand due to the need for more sustainable, recyclable, and eco-friendly composites in a broad range of applications. Written by leading experts in the field, and covering composite materials developed from different natural fibers and their hybridization with synthetic fibers, the book's chapters provide cutting-edge, up-to-date research on the characterization, analysis and modelling of composite materials.
Composite Nanoadsorbents discusses the most recent advances in the field, including promising techniques for waste water decontamination and the advantages and drawbacks of nanoadsorbents in these applications. The implications of nanoadsorbents to public health and future developments for facilitating environmental sustainability are also discussed. New approaches for nanomaterials are analyzed, focusing on the effect of nanotechnology in adsorption applications. The effectiveness of nanosized materials is evaluated, along with cost factors and new synthesis routes of composite nanomaterials. Combining the areas of nanotechnology, adsorption, and composite surface chemistry, the synthesis, modifications and applications of nanotechnology in the adsorption process are demonstrated. Edited by a prolific expert in the field, this book will be a valuable resource for researchers, postgraduate students and professionals in the fields of nanotechnology, adsorption and materials synthesis.
Techniques for microfabricating intricate microfluidic structures that mimic the microenvironment of tissues and organs, combined with the development of biomaterials with carefully engineered surface properties, have enabled new paradigms in and cell culture-based models for human diseases. The dimensions of surface features and fluidic channels made accessible by these techniques are well-suited to the size scale of biological cells. Microfluidic Cell Culture Systems applies design and experimental techniques used in in microfluidics, and cell culture technologies to organ-on-chip systems. This book is intended to serve as a professional reference, providing a practical guide to design and fabrication of microfluidic systems and biomaterials for use in cell culture systems and human organ models. The book covers topics ranging from academic first principles of microfluidic design, to clinical translation strategies for cell culture protocols. The goal is to help professionals coming from an engineering background to adapt their expertise for use in cell culture and organ models applications, and likewise to help biologists to design and employ microfluidic technologies in their cell culture systems. This 2nd edition contains new material that strengthens the focus on in vitro models useful for drug discovery and development. One new chapter reviews liver organ models from an industry perspective, while others cover new technologies for scaling these models and for multi-organ systems. Other new chapters highlight the development of organ models and systems for specific applications in disease modeling and drug safety. Previous chapters have been revised to reflect the latest advances.
For over thirty years, the Surface Production Operations Series has taken the guess work out of the design, selection, installation, operation, testing, and troubleshooting of surface production equipment. The fourth volume in this series, Pumps and Compressors is directed to both entry-level personnel and practicing professionals looking for an up-to-date reference book on managing, evaluating, sizing, selecting, installing, operating and maintaining pump and compressor systems. Packed with examples drawn from years of design and field experience, this reference features many charts, tables, equations, diagrams, and photographs to illustrate the basic applications including pump hydraulics, centrifugal and reciprocating compressor applications, compressor performance maps, pump performance curves, pump and compressor testing and installation, and many more critical topics. Packed with practical solutions Surface Production Operations: Pumps and Compressors delivers an essential design and specification reference for today's engineers.
Recent Advances in System Reliability Engineering describes and evaluates the latest tools, techniques, strategies, and methods in this topic for a variety of applications. Special emphasis is put on simulation and modelling technology which is growing in influence in industry, and presents challenges as well as opportunities to reliability and systems engineers. Several manufacturing engineering applications are addressed, making this a particularly valuable reference for readers in that sector.
Radiation Technology for Advanced Materials presents a range of radiation technology applications for advanced materials. The book aims to bridge the gap between researchers and industry, describing current uses and future prospects. It describes the mature radiation processing technology used in preparing heat shrinkable materials and in wire and cable materials, giving commercial cases. In addition, the book illustrates future applications, including high-performance fibers, special self-lubricating materials, special ultra-fine powder materials, civil fibers, natural polymeric materials, battery separator membranes, special filtration materials and metallic nanomaterials. Chapters cover radiation technology in high-performance fiber and functional textiles, radiation crosslinking and typical applications, radiation crosslinking for polymer foaming material, radiation degradation and application, radiation emulsion polymerization, radiation effects of ionic liquids, radiation technology in advanced new materials, and future prospects.
Use of Recycled Plastics in Eco-efficient Concrete looks at the processing of plastic waste, including techniques for separation, the production of plastic aggregates, the production of concrete with recycled plastic as an aggregate or binder, the fresh properties of concrete with plastic aggregates, the shrinkage of concrete with plastic aggregates, the mechanical properties of concrete with plastic aggregates, toughness of concrete with plastic aggregates, modulus of elasticity of concrete with plastic aggregates, durability of concrete with plastic aggregates, concrete plastic waste powder with enhanced neutron radiation shielding, and more, thus making it a valuable reference for academics and industrial researchers.
New Trends in Eco-efficient and Recycled Concrete describes different recycled materials that have been used in eco-efficient concrete, reviewing previous publications to identify the most effective recycled materials to be applied in concrete manufacture. New trends on eco-efficient concrete are presented, filling a gap in the market. Sections cover various recycled materials applied in concrete production, present the latest on the lifecycle analysis of recycled aggregate concrete, detail new trends in recycled aggregate concrete research, and finally, present updates on upscaling the use of recycled aggregate concrete and structural reliability.
Nanomaterials for the Removal of Pollutants and Resource Reutilization presents the fundamental principles necessary for the application of nanomaterials in environmental pollution control and resource reutilization, also describing specific novel applications of environmentally functional nanomaterials. In addition to outlining the applications of nanomaterials for pollution control, the book highlights problems and offers solutions. This comprehensive resource will inspire the next generation of nanomaterial designers, providing a state-of-the-art review and exploration of emerging developments.
Smart Textiles for in situ Monitoring of Composites proposes a 'smart textile' approach to help solve the problem of real-time monitoring of the structural health of composites. The book combines textiles, composites and structural health monitoring knowledge to present an integrated approach to the deployment of smart textiles to monitor failure modes in composite materials. It introduces the theory of smart textiles for monitoring and measurement applications, describes established and developing techniques and approaches for using smart textiles for in-situ monitoring, and includes different fiber/matrix combinations and hybrid structures that are all presented using academic research and real-world case studies. As smart textiles are fitted with flexible adapted sensors and actuators that detect stress, deformation, temperature changes, light intensity, and other signals from the environment, this book is a timely resource on the topic.
Emerging Materials for Energy Conversion and Storage presents the state-of-art of emerging materials for energy conversion technologies (solar cells and fuel cells) and energy storage technologies (batteries, supercapacitors and hydrogen storage). The book is organized into five primary sections, each with three chapters authored by worldwide experts in the fields of materials science, physics, chemistry and engineering. It covers the fundamentals, functionalities, challenges and prospects of different classes of emerging materials, such as wide bandgap semiconductors, oxides, carbon-based nanostructures, advanced ceramics, chalcogenide nanostructures, and flexible organic electronics nanomaterials. The book is an important reference for students and researchers (from academics, but also industry) interested in understanding the properties of emerging materials.
Polymeric Nanomaterials in Nanotherapeutics describes how polymeric nanosensors and nanorobotics are used for biomedical instrumentation, surgery, diagnosis and targeted drug delivery for cancer, pharmacokinetics, monitoring of diabetes and healthcare. Key areas of coverage include drug administration and formulations for targeted delivery and release of active agents (drug molecules) to non-healthy tissues and cells. The book demonstrates how these are applied to dental work, wound healing, cancer, cardiovascular diseases, neurodegenerative disorders, infectious diseases, chronic inflammatory diseases, metabolic diseases, and more. Methods of administration discussed include oral, dental, topical and transdermal, pulmonary and nasal, ocular, vaginal, and brain drug delivery and targeting. Drug delivery topics treated in several subchapters includes materials for active targeting and cases study of polymeric nanomaterials in clinical trials. The toxicity and regulatory status of therapeutic polymeric nanomaterials are also examined. The book gives a broad perspective on the topic for researchers, postgraduate students and professionals in the biomaterials, biotechnology, and biomedical fields.
Nanotechnology in Herbal Medicine: Applications and Innovations details how nanomaterials can be utilized to improve the therapeutic mechanisms and key properties of herbal drugs. This book guides the reader through the preparation, properties, applications, benefits and challenges of herbal nanoformulations, helping them solve fundamental and applied problems in the area of novel herbal medicines and drug delivery systems. Herbal drugs play a large role in traditional medicines, which are actively used by many cultures across the globe for the treatment of various illnesses and injuries. Despite their widespread use, herbal medicines may lead to possible health risks due to the lack of information on the chemical composition and permitted dosage.
Gallium Oxide: Technology, Devices and Applications discusses the wide bandgap semiconductor and its promising applications in power electronics, solar blind UV detectors, and in extreme environment electronics. It also covers the fundamental science of gallium oxide, providing an in-depth look at the most relevant properties of this materials system. High quality bulk Ga2O3 is now commercially available from several sources and n-type epi structures are also coming onto the market. As researchers are focused on creating new complex structures, the book addresses the latest processing and synthesis methods. Chapters are designed to give readers a complete picture of the Ga2O3 field and the area of devices based on Ga2O3, from their theoretical simulation, to fabrication and application.
Graphene-Based Electrochemical Sensors for Biomolecules presents the latest on these nanomaterials that have gained a lot of attention based on their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage and sensor applications. The hybridization of graphene with other nanomaterials induces a synergetic effect, leading to the improvement in electrical conductivity, stability and an enhancement of the electrocatalytic activity of the new nanocomposite material. This book discusses the electrochemical determination of a variety of biomolecules using graphene-based nanocomposite materials. Finally, recent progress in the development of electrochemical sensors using graphene-based nanocomposite materials and perspectives on future opportunities in sensor research and development are discussed in detail.
Nanomaterials and Polymer Nanocomposites: Raw Materials to Applications brings together the most recent research in nanoparticles and polymer nanocomposites for a range of applications. The book's coverage is comprehensive, starting with synthesis techniques, then moving to characterization and applications of several different classes of nanomaterial and nanoparticle in nanocomposites. By presenting different nanomaterials, such as metal and metal oxides, clay and POSS, carbon nanotubes, cellulose and bio-based polymers in a structured manner, the book enables an efficient comparison of properties and capabilities for these advanced materials, making it relevant both for researchers in an academic environment and also industrial R&D. This book is particularly distinctive because it centers on the raw materials on which the nanocomposites are based, the biological properties of the range of materials discussed, and the environmental and economic considerations of different polymer systems.
Alumina Ceramics: Biomedical and Clinical Applications examines the extraordinary material, Alumina, and its use in biomedicine and industry. Sections discuss the fundamentals of Alumina Ceramics, look at the various industrial applications, and examine a variety of medical applications. Readers will find this to be an invaluable and unique resource for researchers, clinical professionals, engineers, and advanced level students. Alumina ceramics are a leading biomaterial used for specialist medical applications, such as bionic implants and tissue engineering, and the only biomaterial commercially viable for use as bearings for orthopedic hip replacements. As such, this book is a timely resource on the topics discussed.
Fundamental Biomaterials: Metals provides current information on the development of metals and their conversion from base materials to medical devices. Chapters analyze the properties of metals and discuss a range of biomedical applications, with a focus on orthopedics. While the book will be of great use to researchers and professionals in the development stages of design for more appropriate target materials, it will also help medical researchers understand, and more effectively communicate, the requirements for a specific application. With the recent introduction of a number of interdisciplinary bio-related undergraduate and graduate programs, this book will be an appropriate reference volume for students. It represents the second volume in a three volume set, each of which reviews the most important and commonly used classes of biomaterials, providing comprehensive information on materials properties, behavior, biocompatibility and applications. |
You may like...
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Fundamental Biomaterials: Polymers
Sabu Thomas, Preetha Balakrishnan, …
Paperback
Material Modeling with the Visco-Plastic…
Carlos N. Tome, Ricardo A. Lebensohn
Paperback
R5,403
Discovery Miles 54 030
Comprehensive Structural Integrity
Ferri M.H. Aliabadi, Winston (Wole) Soboyejo
Hardcover
R99,774
Discovery Miles 997 740
Comprehensive Nuclear Materials
Rudy Konings, Roger Stoller
Hardcover
R78,910
Discovery Miles 789 100
|