Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials
An all-in-one, comprehensive take on matter and its phase properties In Phases of Matter and Their Transitions, accomplished materials scientist Dr. Gijsbertus de With delivers an accessible textbook for advanced students in the molecular sciences. It offers a balanced and self-contained treatment of the thermodynamic and structural aspects of phases and the transitions between them, covering solids, liquids, gases and their interfaces. The book lays the groundwork to describe particles and their interactions from the perspective of classical and quantum mechanics and compares phenomenological and statistical thermodynamics. It also examines materials with special properties, like glasses, liquid crystals, and ferroelectrics. The author has included an extensive appendix with a guide to the mathematics and theoretical models employed in this resource. Readers will also find: Thorough introductions to classical and quantum mechanics, intermolecular interactions, and continuum mechanics Comprehensive explorations of thermodynamics, gases, liquids, and solids Practical discussions of surfaces, including their general aspects for solids and liquids Fulsome treatments of discontinuous and continuous transitions, including discussions of irreversibility and the return to equilibrium Perfect for advanced students in chemistry and physics, Phases of Matter and Their Transitions will also earn a place in the libraries of students of materials science.
This book, which has only one very distant forerunner authored by David A. Hills with David Nowell, represents a very big step that is the quantification of these problems and represents the twenty-five years' worth of work which have gone on at Oxford since the first book on the subject. Fatigue (popularly 'metal fatigue') is the primary failure mode of all machines, engines, transmissions and indeed almost all mechanical devices. The propagation of cracks is well understood and is treated in the subject Fracture Mechanics. By contrast, the nucleation of cracks is very hard to quantify and this remains the case with so-called 'free initiation' and, to a lesser extent, at cracks nucleated from stress raising features. But the third form of nucleation, where cracks start from the edges of rubbing components, that is, at joints, is potentially a very much better-defined environment, and therefore, the problem is amendable to attack by applied mechanics and experiment. The contents are of value both to those embarking on research on the subject and to practitioner in industry.
This monograph contains expert knowledge on complex fluid-flows in microfluidic devices. The topical spectrum includes, but is not limited to, aspects such as the analysis, experimental characterization, numerical simulations and numerical optimization. The target audience primarily comprises researchers who intend to embark on activities in microfluidics. The book can also be beneficial as supplementary reading in graduate courses.
This volume contains papers presented in the third international symposium titled Fatigue of Materials: Advances and Emergences in Understanding held during the Materials Science and Technology 2014 meeting. The book contains contributions from engineers, technologists, and scientists from academia, research laboratories, and industries. The papers are divided into six topical areas: Session 1: Aluminum Alloys Session 2: Ferrous Materials I Session 3: Ferrous Materials II Session 4: Composite Materials Session 5: Advanced Materials Session 6: Modeling The papers cover a broad spectrum of topics that represent the truly diverse nature of the subject of fatigue as it relates to the world of materials.
This book presents fundamental experimental data and experiment-based theoretical conclusions on, as well as physico-chemical models of, the natural hydrothermal, metasomatic, metamorphic, magmatic and ore-producing processes in the Earth's crust, upper mantle, transition zone and lower mantle. The topics discussed concern the interactions of oil and aqueous fluids as revealed by aqueous-hydrocarbonic inclusions in synthetic quartz and applied to the natural evolution of oil; determining the solubility and inter-phase partitioning of trace and strategic elements and their components; and experimentally validating physico-chemical mechanisms in the ultrabasic-basic evolution of deep-mantle magmatic and diamond-forming systems. In addition, the book presents experimental studies on the physico-chemical properties of supercritical water and hydrothermal fluids, viscosity of acidic ultramafic magmatic materials melts, peculiarities of metamorphism in basic rocks, kinetics of mineral nucleation in silicate melts and hydrothermal solutions, and influence of complex H2O-CO2-HCl fluids on melting relations in mantle-crust rocks, together with novel results and conclusions. Given its scope, the book will be of great interest to all Earth scientists, lecturers and students specialized in experimental and genetic mineralogy, petrology and geochemistry.
This book offers the first comprehensive and practice-oriented guide to condition monitoring algorithms in MATLAB (R). After a concise introduction to vibration theory and signal processing techniques, the attention is moved to the algorithms. Each signal processing algorithm is presented in depth, from the theory to the application, and including extensive explanations on how to use the corresponding toolbox in MATLAB (R). In turn, the book introduces various techniques for synthetic signals generation, as well as vibration-based analysis techniques for large data sets. A practical guide on how to directly access data from industrial condition monitoring systems (CMS) using MATLAB (R) .NET Libraries is also included. Bridging between research and practice, this book offers an extensive guide on condition monitoring algorithms to both scholars and professionals. "Condition Monitoring Algorithms in MATLAB (R) is a great resource for anyone in the field of condition monitoring. It is a unique as it presents the theory, and a number of examples in Matlab (R), which greatly improve the learning experience. It offers numerous examples of coding styles in Matlab, thus supporting graduate students and professionals writing their own codes." Dr. Eric Bechhoefer Founder and CEO of GPMS Developer of the Foresight MX Health and Usage Monitoring System
High Temperature Mechanical Behavior of Ceramic Composites provides
an up-to-date comprehensive coverage of the mechanical behavior of
ceramic matrix composites at elevated temperatures. Topics include
both short-term behavior (strength, fracture toughness and R-curve
behavior) and long-term behavior (creep, creep-fatigue, delayed
failure and lifetime). Emphasis is on a review of fundamentals and
on the mechanics and mechanisms underlying properties.
The book focuses on the next fields of computer science: combinatorial optimization, scheduling theory, decision theory, and computer-aided production management systems. It also offers a quick introduction into the theory of PSC-algorithms, which are a new class of efficient methods for intractable problems of combinatorial optimization. A PSC-algorithm is an algorithm which includes: sufficient conditions of a feasible solution optimality for which their checking can be implemented only at the stage of a feasible solution construction, and this construction is carried out by a polynomial algorithm (the first polynomial component of the PSC-algorithm); an approximation algorithm with polynomial complexity (the second polynomial component of the PSC-algorithm); also, for NP-hard combinatorial optimization problems, an exact subalgorithm if sufficient conditions were found, fulfilment of which during the algorithm execution turns it into a polynomial complexity algorithm. Practitioners and software developers will find the book useful for implementing advanced methods of production organization in the fields of planning (including operative planning) and decision making. Scientists, graduate and master students, or system engineers who are interested in problems of combinatorial optimization, decision making with poorly formalized overall goals, or a multiple regression construction will benefit from this book.
This book presents recent research in the field of transport phenomena in porous materials, including heat and mass transfer, drying and adsorption. Covering a comprehensive range of topics related to the transport phenomenon in engineering (including state-of-the-art, theory and technological applications), it discusses some of the most important theoretical advances, computational developments and applications in porous materials domain. Providing an update on the current state of knowledge, this self-contained reference resource will appeal to scientists, researchers and engineers in a variety of disciplines, such as chemical, civil, agricultural and mechanical engineering.
This book systematically analyses state-of-the-art technology and research related to desiccant dehumidification. It provides key insights into the current research direction, and presents global research and development interests. It begins by offering a comprehensive review of conventional desiccants and their underlying engineering challenges. Fundamental material characteristic properties and factors critical to the desiccant synthesis are highlighted. The applicability of next-generation advanced materials to address the challenges is documented, and the advantages of desiccant coated heat exchangers are evaluated. Lastly, the potential applications of desiccant dehumidifiers in various energy-connected applications are discussed, and case studies on industrial/building cooling systems are provided. Specifically targeted at HVAC engineers, thermal scientists, energy-engineering researchers, and graduate-level students in the field, the technical content balances fundamental concepts and applications.
The "greening" of industry processes - i.e., making them more sustainable - is a popular and often lucrative trend which has seen increased attention in recent years. Green Chemical Processes, the 2nd volume of Green Chemical Processing, covers the hot topic of sustainability in chemistry with a view to education, as well as considering corporate and environmental interests, e.g. in the context of energy production. The diverse team of authors allows for a balance between these different, but interconnected perspectives. The American Chemical Society's 12 Principles of Green Chemistry are woven throughout this text as well as the series to which this book belongs.
Maximum Dissipation: Non-Equilibrium Thermodynamics and its Geometric Structure explores the thermodynamics of non-equilibrium processes in materials. The book develops a general technique created in order to construct nonlinear evolution equations describing non-equilibrium processes, while also developing a geometric context for non-equilibrium thermodynamics. Solid materials are the main focus in this volume, but the construction is shown to also apply to fluids. This volume also: * Explains the theory behind thermodynamically-consistent construction of non-linear evolution equations for non-equilibrium processes * Provides a geometric setting for non-equilibrium thermodynamics through several standard models, which are defined as maximum dissipation processes * Emphasizes applications to the time-dependent modeling of soft biological tissue Maximum Dissipation: Non-Equilibrium Thermodynamics and its Geometric Structure will be valuable for researchers, engineers and graduate students in non-equilibrium thermodynamics and the mathematical modeling of material behavior.
This volume looks afresh at the life and works of Lord Kelvin including his standing and relationships with Charles Darwin, T. S Huxley and the X-club, thereby throwing new light on the nineteenth-century conflict between the British energy and biology specialists. It focuses on two principal issues. Firstly, there is the contribution made by Kelvin to the formulation of the Laws of Thermodynamics, both personal and in the content of the scientific communications exchanged with other workers, such as Joule and Clausius. Secondly, there is Kelvin's impact on the wider field of science such as thermoelectricity and geology (determination of the age of the earth). Of late a number of studies and initiatives, including the Centenary celebrations of Kelvin's death and exhibits such as that of the 'Revolutionary Scientist' in the Hunterian Museum, Glasgow, have been undertaken aiding the redefinition of Kelvin's greatness and achievements. The book also raises awareness to 'improve our approach to the teaching of elementary thermodynamics by attempting to empathise with Kelvin's perspective'.It is completed by a full biography, overviews of various monuments to his memory, and short 'Stories in Pictures' on the Atlantic cable, Maxwell's Demon, the universities associated with the development of thermodynamics and the Royal Society of Edinburgh. Scientists and engineers with an interest in thermodynamics and anyone interested in the work of Lord Kelvin will find benefit in Kelvin, Thermodynamics and the Natural World.
This book describes a new control design technique called Coefficient Diagram Method (CDM), whereby practical control engineers without deep control theories and mathematics background can design a good controller for their specific plants. In addition, control experts can solve some complicated design problems. Since the CDM was first introduced in 1998, it reveals from the literature that CDM has provided successful controller designs for a variety of practical control problems. In the last two decades, a great deal of research has been done on CDM, while a growing number of researchers want to learn and utilize the method. However, there has been no textbook to learn it systematically so far. This book is motivated by such a need. It is also suitable as a textbook or reference book for master programs in control engineering.
Conventional ultrasonic methods based on ultrasonic characteristics in the linear elastic region are mainly sensitive to mature defects but are much less responsive to micro-damage or incipient material degradation. Recently, nonlinear ultrasonic characteristics beyond the linear ultrasonic amplitude range have been studied as a method for overcoming this limitation, and hence, many researchers are engaged in theoretical, experimental, and various application studies. However, the nonlinear ultrasonic characteristics are quite exacting compared to the linear phenomena so that they require vast experience and high proficiency in order to obtain proper experimental data. Actually, many researchers, especially beginners including graduate students, have difficulty in reliably measuring nonlinear ultrasonic characteristics. This book provides key technological know-how from experts with years of experience in this field, which will help researchers and engineers to obtain a clear understanding and high quality data in the nonlinear ultrasonic experiments and applications.
These proceedings of the EPS 2018: 5th International Conference on Geofoam Blocks in Construction Applications, held in Kyrenia, Northern Cyprus on May 9 to 11, 2018, present a collection of contributions on the state-of-the-art of research and applications relating to geofoam. Geofoam researchers, consultants, molders, contractors and practitioners from all around the globe discuss the recent developments and future trends of expanded polystyrene (EPS)-block geofoam technology and its construction applications. EPS'18 contributes to the development of geofoam applications, following on from successful conferences in Oslo (1985), Tokyo (1996), Salt Lake City (2001) and Oslo (2011). The book discusses topics including, but not limited to, current use of geofoam, design specifications, applications, new concepts, material properties, modeling and specific topics in geofoam blocks in construction applications.
This book thoroughly examines and explains the basic processing steps used in MEMS fabrication (both integrated circuit and specialized micro machining processing steps. The book places an emphasis on the process variations in the device dimensions resulting from these commonly used processing steps. This will be followed by coverage of commonly used metrology methods, process integration and variations in material properties, device parameter variations, quality assurance and control methods, and design methods for handling process variations. A detailed analysis of future methods for improved microsystems manufacturing is also included. This book is a valuable resource for practitioners, researchers and engineers working in the field as well as students at either the undergraduate or graduate level.
This book comprises a collection of chapters on advances in green nanomaterials. The book looks at ways to establish long-term safe and sustainable forms of nanotechnology through implementation of nanoparticle biosynthesis with minimum impact on the ecosystem. The book looks at synthesis, processing, and applications of metal and metal oxide nanomaterials and also at bio-nanomaterials. The contents of this book will prove useful for researchers and professionals working in the field of nanomaterials and green technology.
This book gathers the peer-reviewed contributions presented at two parallel, closely interconnected events on advanced construction materials and processes, namely the 2nd International RILEM Conference on Rheology and Processing of Construction Materials (RheoCon2) and the 9th International RILEM Symposium on Self-Compacting Concrete (SCC9), held in Dresden, Germany on 8-11 September 2019. The papers discuss various aspects of research on the development, testing, and applications of cement-based and other building materials together with their specific rheological properties. Furthermore, the papers cover the latest findings in the fast-growing field of self-compacting concrete, addressing topics including components' properties and characterization; chemical admixtures, effect of binders (incl. geopolymers, calcined clay, etc.) and mixture design; laboratory and in-situ rheological testing; constitutive models and flow modelling; numerical simulations; mixing, processing and casting processes; and additive manufacturing / 3D-printing. Also presenting case studies, the book is of interest to researchers, graduate students, and industry specialists, such as material suppliers, consultants and construction experts.
This book provides a comprehensive introduction to the kinetic theory for describing flow problems from molecular scale, hydrodynamic scale, to Darcy scale. The author presents various numerical algorithms to solve the same Boltzmann-like equation for different applications of different scales, in which the dominant transport mechanisms may differ. This book presents a concise introduction to the Boltzmann equation of the kinetic theory, based on which different simulation methods that were independently developed for solving problems of different fields can be naturally related to each other. Then, the advantages and disadvantages of different methods will be discussed with reference to each other. It mainly covers four advanced simulation methods based on the Boltzmann equation (i.e., direct simulation Monte Carlo method, direct simulation BGK method, discrete velocity method, and lattice Boltzmann method) and their applications with detailed results. In particular, many simulations are included to demonstrate the applications for both conventional and unconventional reservoirs. With the development of high-resolution CT and high-performance computing facilities, the study of digital rock physics is becoming increasingly important for understanding the mechanisms of enhanced oil and gas recovery. The advanced methods presented here have broad applications in petroleum engineering as well as mechanical engineering , making them of interest to researchers, professionals, and graduate students alike. At the same time, instructors can use the codes at the end of the book to help their students implement the advanced technology in solving real industrial problems. |
You may like...
Intelligent Materials for Controlled…
Steven M Dinh, John DeNuzzio, …
Hardcover
R2,292
Discovery Miles 22 920
Callister's Materials Science and…
William D. Callister, David G. Rethwisch
Paperback
R1,432
Discovery Miles 14 320
Sustainable Nanotechnology and the…
Najm Shamim, Virender K. Sharma
Hardcover
R5,423
Discovery Miles 54 230
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Aggregation-Induced Emission: Materials…
Michiya Fujiki, bin Liu, …
Hardcover
R4,787
Discovery Miles 47 870
Productivity with Health, Safety, and…
Lakhwinder Pal Singh, Arvind Bhardwaj, …
Hardcover
R5,244
Discovery Miles 52 440
The Science and Technology of Silicones…
Stephen J. Clarson, John J Fitzgerald, …
Hardcover
R2,525
Discovery Miles 25 250
|