![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials
Modified Clay and Zeolite Nanocomposite Materials: Environmental and Pharmaceutical Applications retraces the most important knowledge gaps that the scientific community is facing, including a drawback of real-world applications. This valuable resource explores the novel applications of this group of nanomaterials that can be suitably surface-modified to obtain properties that can be applied in environmental and pharmaceutical fields. For example, modification with surfactants has given new motivation to the study of these materials by producing an inversion in the ion exchange behavior from cationic to anionic. This strategy has paved the way for new uses highlighted in this timely resource.
Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites provides detailed information on failure analysis, mechanical and physical properties, structural health monitoring, durability and life prediction, modelling of damage processes of natural fiber, synthetic fibers, and natural/natural, and natural/synthetic fiber hybrid composites. It provides a comprehensive review of both established and promising new technologies currently under development in the emerging area of structural health monitoring in aerospace, construction and automotive structures. In addition, it describes SHM methods and sensors related to specific composites and how advantages and limitations of various sensors and methods can help make informed choices. Written by leading experts in the field, and covering composite materials developed from different natural fibers and their hybridization with synthetic fibers, the book's chapters provide cutting-edge, up-to-date research on the characterization, analysis and modelling of composite materials.
Lignocellulose for Future Bioeconomy discusses the conversion and utilization of lignocellulosic biomass. This book focuses on the utilization of lignocelluloses for various products, including biopolymers, bionanomaterials and bioproducts. Recent findings in scientific investigation, engineering, product development, economic and lifecycle analysis are discussed, as are current synthesis technologies and potential applications. The book progresses from a discussion of the potential sources of biomass, to the refinement and processing of materials. A sampling of various sustainability issues faced by industries in their production methods and a look at real world examples of the use of lignocellulose-based materials in the bioeconomy round out the discussion.
Nature-inspired Optimization Algorithms for Fuzzy Controlled Servo Systems explains fuzzy control in servo systems in a way that doesn't require any solid mathematical prerequisite. Analysis and design methodologies are covered, along with specific applications to servo systems and representative case studies. The theoretical approaches presented throughout the book are validated by the illustration of digital simulation and real-time experimental results. This book is a great resource for a wide variety of readers, including graduate students, engineers (designers, practitioners and researchers), and everyone who faces challenging control problems.
Forsthoffer's Component Conditioning Monitoring Handbook is dedicated to the condition monitoring of all rotating equipment. It describes the Forsthoffer Associates method of Component Condition Monitoring (CCM) and gives the reader detailed instructions on what to monitor for each component type. The author's easy and approachable style makes this a very practical reference for any level of technical background. This represents the latest addition to a set that includes volumes on 1. Fundamentals of Rotating Equipment; 2. Pumps; 3. Compressors; 4. Auxiliary Systems; 5. Reliability Optimization through Component Condition Monitoring and Root Cause Analysis'.
Nanotechnology in Water and Waste Water Treatment: Theory and Applications explores the unique physicochemical and surface properties of nanoparticles and highlights the advantages they provide for engineering applications. Applications covered include the generation of fresh water from surface water and seawater, the prevention of the contamination of the environment, and the creation of effective and efficient methods for remediation of polluted waters. Each chapter covers a different nanotechnology-based approach and examines the basic principles, practical applications, recent breakthroughs and associated limitations. This book is ideal for researchers and professionals in the fields of nanotechnology, water treatment and desalination. In addition, it is also ideal for postgraduate students, industry and government professionals, managers and policymakers.
Molecular Sensors and Nanodevices: Principles, Designs and Applications in Biomedical Engineering, Second Edition is designed to be used as a foundational text, aimed at graduates, advanced undergraduates, early-career engineers and clinicians. The book presents the essential principles of molecular sensors, including theories, fabrication techniques and reviews. In addition, important devices and recently, highly-cited research outcomes are also cited. This differentiates the book from other titles on the market whose primary focus is more research-oriented and aimed at more of a niche market.
Green Composites for Automotive Applications presents cutting-edge, comprehensive reviews on the industrial applications of green composites. The book provides an elaborative assessment of both academic and industrial research on eco-design, durability issues, environmental performance, and future trends. Particular emphasis is placed on the processing and characterization of green composites, specific types of materials, such as thermoset and thermoplastic, nanocomposites, sandwich, and polymer biofoams. Additional sections cover lifecycle and risk analysis. As such, this book is an essential reference resource for R&D specialists working in materials science, automotive, chemical, and environmental engineering, as well as R&D managers in industry.
The Impact and Prospects of Green Chemistry for Textile Technology provides a review and summary of the role of green chemistry in textiles, including the use of green agents and sustainable technologies in different textile applications. The book systematically covers the history and chemistry of eco-friendly colorants, chitin, chitosan, cyclodextrin, biomordants, antimicrobial, UV protective, flame retardant, insect repellant textiles, and advanced pre- and post- treatment technologies, such as the sonochemistry and plasma methods currently employed in functional modifications. The book also pays attention to the remediation of textile effluents using novel, sustainable and inexpensive adsorbents. Written by high profile contributors with many years of experience in textile technology, the book gives engineers and materials scientists in the textile industry the information they need to effectively deploy these green technologies and processes.
Functionalized Graphene Nanocomposites and Their Derivatives: Synthesis, Processing and Applications explains how the functionalization technique is used to create graphene nanocomposites, also exploring its current uses in industrial applications. Graphene-based nanocomposites are one of the major advancements in polymer-based materials, thus the synthesis, nanoscale dimensions, high aspect ratio, mechanical, electrical and thermal properties of graphene and its derivative have all been major areas of research in the last decade. This important reference covers these updates and is a critical book for those working in the fields of materials processing and characterization.
Nanotechnology in Modern Animal Biotechnology: Concepts and Applications discusses the advancement of nanotechnologies in almost every field, ranging from materials science, to food, forensic, agriculture and life sciences, including biotechnology and medicine. Nanotechnology is already being harnessed to address many of the key problems in animal biotechnology, with future applications covering animal biotechnology (e.g. animal nutrition, health, disease diagnosis, and drug delivery). This book provides the tools, ideas and techniques of nanoscale principles to investigate, understand and transform biological systems. Nanotechnology provides the ability to manipulate materials at atomic and molecular levels and also arrange atom-by-atom on a scale of ~1-100 nm to create, new materials and devices with fundamentally new functions and properties arising due to their small scale.
In the automotive industry, the need to reduce vehicle weight has given rise to extensive research efforts to develop aluminum and magnesium alloys for structural car body parts. In aerospace, the move toward composite airframe structures urged an increased use of formable titanium alloys. In steel research, there are ongoing efforts to design novel damage-controlled forming processes for a new generation of efficient and reliable lightweight steel components. All these materials, and more, constitute today's research mission for lightweight structures. They provide a fertile materials science research field aiming to achieve a better understanding of the interplay between industrial processing, microstructure development, and the resulting material properties. Advancements in the Processing, Characterization, and Application of Lightweight Materials provides the recent advancements in the lightweight mat materials processing, manufacturing, and characterization. This book identifies the need for modern tools and techniques for designing lightweight materials and addresses multidisciplinary approaches for applying their use. Covering topics such as numerical optimization, fatigue characterization, and process evaluation, this text is an essential resource for materials engineers, manufacturers, practitioners, engineers, academicians, chief research officers, researchers, students, and vice presidents of research in government, industry, and academia.
Gas Sensors Based on Conducting Metal Oxides: Basic Understanding, Technology and Applications focuses on two distinct types of gas sensors based on conducting metal oxides. Ion conduction, applied in so-called solid-state electrolytic sensors for one, and electronic conduction used in semiconductivity gas sensors for the other. The well-known ?-probe, a key component to optimize combustion in car engines, is an example of the former type, and the in-cabin car air-quality control SnO2 and WO2 sensor array stands for the semiconductivity type. Chapters cover basic aspects of functioning principles and describe the technologies and challenges of present and future sensors.
Nanotube Superfiber Materials: Science, Manufacturing, Commercialization, Second Edition, helps engineers and entrepreneurs understand the science behind the unique properties of nanotube fiber materials, how to efficiency and safely produce them, and how to transition them into commercial products. Each chapter gives an account of the basic science, manufacturing, properties and commercial potential of a specific nanotube material form and its application. New discoveries and technologies are explained, along with experiences in handing-off the improved materials to industry. This book spans nano-science, nano-manufacturing, and the commercialization of nanotube superfiber materials. As such, it opens up the vast commercial potential of nanotube superfiber materials. Applications for nanotube superfiber materials cut across most of the fields of engineering, including spacecraft, automobiles, drones, hyperloop tracks, water and air filters, infrastructure, wind energy, composites, and medicine where nanotube materials enable development of tiny machines that can work inside our bodies to diagnose and treat disease.
Unsaturated Polyester Resins: Fundamentals, Design, Fabrication, and Applications explains the preparation, techniques and applications relating to the use of unsaturated polyester resin systems for blends, interpenetrating polymer networks (IPNs), gels, composites and nanocomposites, enabling readers to understand and utilize the improved material properties that UPRs facilitate. Chapters cover unsaturated polyester resins and their interaction at the macro, micro and nano levels, in-depth studies on the properties and analysis of UPR based materials, and the applications of UPR based composites, blends, IPNs and gels across a range of advanced commercial and industrial fields. This is a highly detailed source of information on unsaturated polyester resins, supporting academics, researchers and postgraduate students working with UPRs, polyesters, polymeric or composite materials, polymer chemistry, polymer physics, and materials science, as well as scientists, R&D professionals and engineers in industry.
Nanohybrid and Nanoporous Materials for Aqueous Environmental Pollution Control gives a comprehensive treatment of fabrication methods and their application in environmental remediation, including adsorption, catalysis and signal transfer in pollutant detection. The design, fabrication and application of nanohybrid and nanoporous materials for environmental pollution control are described in detail, along with discussions on their synthesis, characterization, and applications in different aspects of pollutant treatment. Chapters introduce the design and synthesis of magnetic nanohybrid materials, advanced oxide process-photocatalytic degradation of environmental pollutants based on nanomaterials, and nanohybrids of iron based materials for reduction and oxidation of aqueous recalcitrant pollutant. Finally, challenges and suggestions in the application of nanomaterials for environmental pollution control are discussed, as is an analysis of the future perspective of nanomaterials for environmental application.
Antiviral and Antimicrobial Coatings Based on Functionalized Nanomaterials: Design, Applications, and Devices is the first book on functionalized nanoparticles-based coatings that encompasses the majority of aspects of antimicrobial and antiviral coatings. The use of functionalized nanoparticles has revolutionized all fields of science and engineering, and this book provides the reader with a fundamental, interdisciplinary look at this emerging field. It focuses on the most advanced coating systems being utilized by various industries including a discussion of the current challenges to be considered during manufacturing. This book provides both academics and those working in industry with a broad-based introduction to the area of modern antimicrobial coatings practices.
Nanoelectronics: Devices, Circuits and Systems explores current and emerging trends in the field of nanoelectronics, from both a devices-to-circuits and circuits-to-systems perspective. It covers a wide spectrum and detailed discussion on the field of nanoelectronic devices, circuits and systems. This book presents an in-depth analysis and description of electron transport phenomenon at nanoscale dimensions. Both qualitative and analytical approaches are taken to explore the devices, circuit functionalities and their system applications at deep submicron and nanoscale levels. Recent devices, including FinFET, Tunnel FET, and emerging materials, including graphene, and its applications are discussed. In addition, a chapter on advanced VLSI interconnects gives clear insight to the importance of these nano-transmission lines in determining the overall IC performance. The importance of integration of optics with electronics is elucidated in the optoelectronics and photonic integrated circuit sections of this book. This book provides valuable resource materials for scientists and electrical engineers who want to learn more about nanoscale electronic materials and how they are used.
Computational Techniques for Multiphase Flows, Second Edition, provides the latest research and theories covering the most popular multiphase flows The book begins with an overview of the state-of-the-art techniques for multiple numerical methods in handling multiphase flow, compares them, and finally highlights their strengths and weaknesses. In addition, it covers more straightforward, conventional theories and governing equations in early chapters, moving on to the more modern and complex computational models and tools later in the book. It is therefore accessible to those who may be new to the subject while also featuring topics of interest to the more experienced researcher. Mixed or multiphase flows of solid/liquid or solid/gas are commonly found in many industrial fields, and their behavior is complex and difficult to predict in many cases. The use of computational fluid dynamics (CFD) has emerged as a powerful tool for understanding fluid mechanics in multiphase reactors, which are widely used in the chemical, petroleum, mining, food, automotive, energy, aerospace and pharmaceutical industries. This revised edition is an ideal reference for scientists, MSc students and chemical and mechanical engineers in these areas. |
You may like...
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Material Modeling with the Visco-Plastic…
Carlos N. Tome, Ricardo A. Lebensohn
Paperback
R5,403
Discovery Miles 54 030
Nanofluid Applications for Advanced…
Shriram S. Sonawane, Mohsen Sharifpur
Paperback
R3,922
Discovery Miles 39 220
The Welding Engineer's Guide to Fracture…
Philippa Moore, Geoff Booth
Hardcover
R3,760
Discovery Miles 37 600
Comprehensive Structural Integrity
Ferri M.H. Aliabadi, Winston (Wole) Soboyejo
Hardcover
R99,774
Discovery Miles 997 740
|