![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials
Nanofibers are a flexible material with a huge range of potential applications in such areas as technical textiles. Functional nanofibers and their applications summarises key trends in the processing and applications of these exciting materials. Part one focuses on the types and processing of nanofibers. Beginning with an overview of the principles and techniques involved in their production, it goes on to review core-shell, aligned, porous and gradient nanofibers. The processing and application of composite functional nanofibers, carbon and polymer nanofiber reinforcements in polymer matrix composites, and inorganic functional nanofibers are then explored in detail, before part one concludes with a consideration of surface functionalization. A wide variety of functional nanofiber applications are then reviewed in part two. Following consideration of their use in filtration, drug delivery and tissue engineering applications, the role of functional nanofibers in lithium-ion batteries, sensor applications, protective clothing, food processing and water purification is explored. Discussion of their use in sound absorption, electromagnetic wave attenuation and biomedical and microelectronic applications follows, before a final discussion of future trends. With its distinguished editor and international team of expert contributors, Functional nanofibers and applications is a key text for all those working in the fields of technical textiles, as well as areas using nanofibers such as composites, biomaterials and microelectronics.
This book, the first in the Woodhead Publishing Reviews: Mechanical Engineering Series, is a collection of high quality articles (full research articles, review articles and cases studies) with a special emphasis on research and development in mechatronics and manufacturing engineering. Mechatronics is the blending of mechanical, electronic, and computer engineering into an integrated design. Today, mechatronics has a significant and increasing impact on engineering with emphasis on the design, development and operation of manufacturing engineering systems. The main objective of this interdisciplinary engineering field is the study of automata from an engineering perspective, thinking on the design of products and manufacturing processes and systems. Mechatronics and manufacturing systems are well established and executed within a great number of industries including aircraft, automotive and aerospace industries; machine tools, moulds and dies product manufacturing, computers, electronics, semiconductor and communications, and biomedical.
Nanomaterials exhibit unique mechanical and physical properties compared to their coarse-grained counterparts, and are consequently a major focus of current scientific research. Defect structure in nanomaterials provides a detailed overview of the processing methods, defect structure and defect-related mechanical and physical properties of a wide range of nanomaterials. The book begins with a review of the production methods of nanomaterials, including severe plastic deformation, powder metallurgy and electrodeposition. The lattice defect structures formed during the synthesis of nanomaterials are characterised in detail. Special attention is paid to the lattice defects in low stacking fault energy nanomaterials and metal - carbon nanotube composites. Topics covered in the second part of the book include a discussion of the thermal stability of defect structure in nanomaterials and a study of the influence of lattice defects on mechanical and hydrogen storage properties.
The growing use of composites over metals for structural applications has made a thorough understanding of the behaviour of composite joints in various applications essential for engineers, but has also presented them with a new set of problems. Composite joints and connections addresses these differences and explores the design, modelling and testing of bonded and bolted joints and connections. Part one discusses bolted joints whilst part two examines bonded joints. Chapters review reinforcement techniques and applications for composite bolted and bonded joints and investigate the causes and effects of fatigue and stress on both types of joint in various applications and environments. Topics in part one include metal hybridization, glass-reinforced aluminium (GLARE), hybrid fibre metal laminates (FML), glass fibre reinforced polymer (GFRP) and carbon fibre reinforced polymer (CFRP) composites. Topics in part two include calculation of strain energy release rates, simulating fracture and fatigue failure using cohesive zone models, marine and aerospace applications, advanced modelling, stress analysis of bonded patches and scarf repairs. Composite joints and connections is a valuable reference for composite manufacturers and composite component fabricators, the aerospace, automotive, shipbuilding and civil engineering industries and for anyone involved in the joining and repair of composite structures.
The failure of any welded joint is at best inconvenient and at worst can lead to catastrophic accidents. Fracture and fatigue of welded joints and structures analyses the processes and causes of fracture and fatigue, focusing on how the failure of welded joints and structures can be predicted and minimised in the design process. Part one concentrates on analysing fracture of welded joints and structures, with chapters on constraint-based fracture mechanics for predicting joint failure, fracture assessment methods and the use of fracture mechanics in the fatigue analysis of welded joints. In part two, the emphasis shifts to fatigue, and chapters focus on a variety of aspects of fatigue analysis including assessment of local stresses in welded joints, fatigue design rules for welded structures, k-nodes for offshore structures and modelling residual stresses in predicting the service life of structures. With its distinguished editor and international team of contributors, Fracture and fatigue of welded joints and structures is an essential reference for mechanical, structural and welding engineers, as well as those in the academic sector with a research interest in the field.
Computer technology has transformed textiles from their design through to their manufacture and has contributed to significant advances in the textile industry. Computer technology for textiles and apparel provides an overview of these innovative developments for a wide range of applications, covering topics including structure and defect analysis, modelling and simulation, and apparel design. The book is divided into three parts. Part one provides a review of different computer-based technologies suitable for textile materials, and includes chapters on computer technology for yarn and fabric structure analysis, defect analysis and measurement. Chapters in part two discuss modelling and simulation principles of fibres, yarns, textiles and garments, while part three concludes with a review of computer-based technologies specific to apparel and apparel design, with themes ranging from 3D body scanning to the teaching of computer-aided design to fashion students. With its distinguished editor and international team of expert contributors, Computer technology for textiles and apparel is an invaluable tool for a wide range of people involved in the textile industry, from designers and manufacturers to fibre scientists and quality inspectors.
The textile industry is increasingly based on ongoing innovation and development of higher performance products, and the field of functional textiles is no exception. This book explores the development of textiles with a wide range of functions, with the aim of improving the performance of the product in terms of the protection and health benefits that it can offer. The book is split into two parts. Part one focuses on functional textiles for improved performance and protection, with chapters reviewing antistatic, flame retardant and infrared functional textiles, among many others. Chapters in part two examine the uses of functional textiles in a medical context, including superhydrophobic materials, antibacterial textiles and insect-repellent materials. With its distinguished editors and contributions from some of the world's leading authorities, Functional textiles for improved performance, protection and health is invaluable for textile scientists, technologists and engineers as well as those designing and manufacturing textiles. It is also a suitable reference for the academic sector.
Electrical motor products reviews the energy efficiency management laws for electrical motor products in United States, European Union (EU) and China. The energy efficiency certification requirements for the electrical motor products vary from country to country and are summarised here. International standards, testing methods and certification requirements for specific electrical motor products are discussed, including electric motors, pumps and fans. Finally, methods for improving energy efficiency are examined.
Understanding the properties of polymer carbon nanotube (CNT) composites is the key to these materials finding new applications in a wide range of industries, including but not limited to electronics, aerospace and biomedical/bioengineering. Polymer-carbon nanotube composites provides comprehensive and in-depth coverage of the preparation, characterisation, properties and applications of these technologically interesting new materials. Part one covers the preparation and processing of composites of thermoplastics with CNTs, with chapters covering in-situ polymerization, melt processing and CNT surface treatment, as well as elastomer and thermoset CNT composites. Part two concentrates on properties and characterization, including chapters on the quantification of CNT dispersion using microscopy techniques, and on topics as diverse as thermal degradation of polymer/CNT composites, the use of rheology, Raman spectroscopy and multi-scale modelling to study polymer/CNT composites, and CNT toxicity. In part three, the applications of polymer/CNT composites are reviewed, with chapters on specific applications such as in fibres and cables, bioengineering applications and conductive polymer CNT composites for sensing. With its distinguished editors and international team of contributors, Polymer-carbon nanotube composites is an essential reference for scientists, engineers and designers in high-tech industry and academia with an interest in polymer nanotechnology and nanocomposites.
Adhesives for electronic applications serve important functional and structural purposes in electronic components and packaging, and have developed significantly over the last few decades. Advanced adhesives in electronics reviews recent developments in adhesive joining technology, processing and properties. The book opens with an introduction to adhesive joining technology for electronics. Part one goes on to cover different types of adhesive used in electronic systems, including thermally conductive adhesives, isotropic and anisotropic conductive adhesives and underfill adhesives for flip-chip applications. Part two focuses on the properties and processing of electronic adhesives, with chapters covering the structural integrity of metal-polymer adhesive interfaces, modelling techniques used to assess adhesive properties and adhesive technology for photonics. With its distinguished editors and international team of contributors, Advanced adhesives in electronics is a standard reference for materials scientists, engineers and chemists using adhesives in electronics, as well as those with an academic research interest in the field.
Hydrogels are very important for biomedical applications because they can be chemically manipulated to alter and control the hydrogel's interaction with cells and tissues. Their flexibility and high water content is similar to that of natural tissue, making them extremely suitable for biomaterials applications. Biomedical hydrogels explores the diverse range and use of hydrogels, focusing on processing methods and novel applications in the field of implants and prostheses. Part one of this book concentrates on the processing of hydrogels, covering hydrogel swelling behaviour, superabsorbent cellulose-based hydrogels and regulation of novel hydrogel products, as well as chapters focusing on the structure and properties of hydrogels and different fabrication technologies. Part two covers existing and novel applications of hydrogels, including chapters on spinal disc and cartilage replacement implants, hydrogels for ophthalmic prostheses and hydrogels for wound healing applications. The role of hydrogels in imaging implants in situ is also discussed. With its distinguished editor and international team of contributors, Biomedical hydrogels is an excellent reference for biomedical research scientists and engineers in industry and academia, as well as others involved in research in this area, such as research clinicians.
One of the major reasons for composite failure is a breakdown of the bond between the reinforcement fibres and the matrix. When this happens, the composite loses strength and fails. By engineering the interface between the natural fibres and the matrix, the properties of the composite can be manipulated to give maximum performance. Interface engineering of natural fibre composites for maximum performance looks at natural (sustainable) fibre composites and the growing trend towards their use as reinforcements in composites. Part one focuses on processing and surface treatments to engineer the interface in natural fibre composites and looks in detail at modifying cellulose fibre surfaces in the manufacture of natural fibre composites, interface tuning through matrix modification and preparation of cellulose nanocomposites. It also looks at the characterisation of fibre surface treatments by infrared and raman spectroscopy and the effects of processing and surface treatment on the interfacial adhesion and mechanical properties of natural fibre composites. Testing interfacial properties in natural fibre composites is the topic of part two which discusses the electrochemical characterisation of the interfacial properties of natural fibres, assesses the mechanical and thermochemical properties and moisture uptake behaviour of natural fibres and studies the fatigue and delamination of natural fibre composites before finishing with a look at Raman spectroscopy and x-ray scattering for assessing the interface in natural fibre composites With its distinguished editor and international team of contributors Interface engineering of natural fibre composites for maximum performance is an invaluable resource to composite manufacturers and developers, materials scientists and engineers and anyone involved in designing and formulating composites or in industries that use natural fibre composites.
Thermodynamics is a self-contained analysis of physical and chemical processes based on classical thermodynamic principles. Emphasis is placed on the fundamental principles with a combination of theory and practice, demonstrating their application to a variety of disciplines. This edition has been completely revised and updated to include new material and novel formulations, including new formulation and interpretation of The Second Law, discussions of heat vs. work, uniqueness of chemical potential, and construction of functions of state. This book will appeal to graduate students and professional chemists and physicists who wish to acquire a more sophisticated overview of thermodynamics and related subject matter.
In this book the authors focus on the description of the physical nature of cleavage fracture to offer scientists, engineers and students a comprehensive physical model which vividly describes the cleavage microcracking processes operating on the local (microscopic) scale ahead of a defect. The descriptions of the critical event and the criteria for cleavage fracture will instruct readers in how to control the cleavage processes and optimize microstructure to improve fracture toughness of metallic materials.
This book is an overview of the strategies to generate high-quality films of one-dimensional semiconductor nanostructures on flexible substrates (e.g., plastics) and the use of them as building blocks to fabricating flexible devices (including electronics, optoelectronics, sensors, power systems). In addition to engineering aspects, the physics and chemistry behind the fabrication and device operation will also be discussed as well. Internationally recognized scientists from academia, national laboratories, and industries, who are the leading researchers in the emerging areas, are contributing exceptional chapters according to their cutting-edge research results and expertise. This book will be an on-time addition to the literature in nanoscience and engineering. It will be suitable for graduate students and researchers as a useful reference to stimulate their research interest as well as facilitate their research in nanoscience and engineering.
Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circulations included to help deepen understanding. Whilst competing resources are weighed down with complex mathematics, this book focuses on the essential equations and provides full workings to take readers step-by-step through the theory so they can concentrate on the practical applications.
Fracture Mechanics covers classical and modern methods and introduce new/unique techniques, making this text an important resource for anyone involved in the study or application of fracture mechanics. Using insights from leading experts in fracture mechanics, it provides new approaches and new applications to advance the understanding of crack initiation and propagation. With a concise and easily understood mathematical treatment of crack tip fields, this book provides the basis for applying fracture mechanics in solving practical problems. It features a unique coverage of bi-material interfacial cracks, with applications to commercially important areas of composite materials, layered structures, and microelectronic packaging. A full chapter is devoted to the cohesive zone model approach, which has been extensively used in recent years to simulate crack propagation. A unified discussion of fracture criteria involving nonlinear/plastic deformations is also provided. The book is an invaluable resource for mechanical, aerospace, civil, and biomedical engineers in the field of mechanics as well as for graduate students and researchers studying mechanics.
Food processing is the step of the food chain that principally affects a food's physical or biochemical properties, along with determining the safety and shelf life of the product. This book provides a comprehensive overview of innovations in non-thermal technologies specifically for fluid foods, recognized for their high bioavailability of macronutrients and micronutrients. Considerable resources and expertise has been devoted to the processing of safe and wholesome foods. Non-thermal technologies have been developed as an alternative to thermal processing, while still meeting required safety or shelf-life demands and minimising the effects on its nutritional and quality attributes.
Buckling and Ultimate Strength of Ship and Ship-like Floating Structures provides an integrated state-of-the-art evaluation of ship structure mechanics including buckling, plastic failure, ultimate strength, and ultimate bending moments. For the design of any industrial product, it is necessary to understand the fundamentals in the failure behavior of structures under extreme loads. Significant developments have been made in understanding the analysis method of plastic collapse and behavior and strength of structures accompanied by buckling. Written by two of the foremost experts in international ship design and ocean engineering, this book introduces fundamental theories and methods as well as new content on the behavior of buckling/plastic collapse that help explain analysis like the initial imperfections produced by welding and the ultimate strength of plates, double bottom structures of bulk carriers, and ship and FPSO hull girders in longitudinal bending. Rounding out with additional coverage on floating structures such as oil and gas platforms and LNG/FLNG structural characteristics, Buckling and Ultimate Strength of Ship and Ship-like Floating Structures is a must-have resource for naval architects and other marine engineering professionals seeking to gain an in-depth understanding of the technological developments in this area.
For a first course in MaterialsSciences and Engineering taught in the departments of materials science,mechanical, civil and general engineering. Introduction to Materials Sciencefor Engineers provides balanced, currenttreatment of the full spectrum of engineering materials, covering all thephysical properties, applications and relevant properties associated withengineering materials. It explores all of the major categories of materialswhile also offering detailed examinations of a wide range of new materials withhigh-tech applications.
Friction Dynamics: Principles and Applications introduces readers to the basic principles of friction dynamics, which are presented in a unified theoretical framework focusing on some of the most important engineering applications. The book's chapters introduce basic concepts and analytical methods of friction dynamics, followed by sections that explore the fundamental principles of frictions. Concluding chapters focus on engineering applications in brake dynamics, the friction dynamics of rods used in oil suck pump systems, and the friction impact dynamics of rotors. This book provides comprehensive topics and up-to-date results, also presenting a thorough account of important advancements in friction dynamics which offer insights into varied dynamic phenomena, helping readers effectively design and fabricate stable and durable friction systems and components for various engineering and scientific friction dynamical systems.
Nanoarchitectonics for Smart Delivery and Drug Targeting is one of the first books on the market to exclusively focus on the topic of nanoarchitectonics, a rapidly developing area of nanotechnology which allows scientists to arrange nanoscale structural units, typically a group of atoms or molecules, in an intended configuration. This book assesses novel applications of nanomaterials in the areas of smart delivery and drug targeting using nanoarchitectonics and discusses the advantages and disadvantages of each application.
The design and study of materials is a pivotal component to new discoveries in the various fields of science and technology. By understanding the components and structures of materials, researchers can increase its applications across different industries. Modeling and Simulations for Metamaterials: Emerging Research and Opportunities is a critical scholarly resource that examines the physics of metamaterials with an emphasis on negative-index metamaterials and their applications at terahertz frequencies. Featuring coverage on a broad range of topics, such as electromagnetic waves, harmonic oscillator model, and scattering analysis, this book is geared towards academicians, researchers, engineers, industrialists, and graduate students researching in the field.
Frequency Analysis of Vibration Energy Harvesting Systems aims to present unique frequency response methods for analyzing and improving vibration energy harvesting systems. Vibration energy is usually converted into heat energy, which is transferred to and wasted in the environment. If this vibration energy can be converted into useful electric energy, both the performance and energy efficiency of machines, vehicles, and structures will be improved, and new opportunities will open up for powering electronic devices. To make use of ambient vibration energy, an effective analysis and design method is established and developed in this book. The book covers a wide range of frequency response analysis methods and includes details of a variety of real-life applications. MATLAB programming is introduced in the first two chapters and used in selected methods throughout the book. Using the methods studied, readers will learn how to analyze and optimize the efficiency of vibration energy systems. This book will be ideal for postgraduate students and researchers in mechanical and energy engineering. |
![]() ![]() You may like...
Productivity with Health, Safety, and…
Lakhwinder Pal Singh, Arvind Bhardwaj, …
Hardcover
R5,632
Discovery Miles 56 320
Nanofluid Applications for Advanced…
Shriram S. Sonawane, Mohsen Sharifpur
Paperback
R4,167
Discovery Miles 41 670
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Comprehensive Structural Integrity
Ferri M.H. Aliabadi, Winston (Wole) Soboyejo
Hardcover
R106,138
Discovery Miles 1 061 380
|