![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials
Advances in Construction and Demolition Waste Recycling: Management, Processing and Environmental Assessment is divided over three parts. Part One focuses on the management of construction and demolition waste, including estimation of quantities and the use of BIM and GIS tools. Part Two reviews the processing of recycled aggregates, along with the performance of concrete mixtures using different types of recycled aggregates. Part Three looks at the environmental assessment of non-hazardous waste. This book will be a standard reference for civil engineers, structural engineers, architects and academic researchers working in the field of construction and demolition waste.
Advanced Processing, Properties, and Applications of Starch and Other Bio-based Polymers presents the latest cutting-edge research into the processing and applications of bio-based polymers, for novel industrial applications across areas including biomedical and electronics. The book is divided into three sections, covering processing and manufacture, properties, and applications. Throughout the book, key aspects of sustainability are considered, including improved utilization of available natural resources, sustainable design possibilities, cleaner production processes, and waste management.
The gradual increase of population and the consequential rise in the energy demands in the recent years have led to the overwhelming use of fossil fuels. Hydrogen has recently gained substantial interest because of its outstanding features to be used as clean energy carrier and energy vector. Moreover, hydrogen appears to be an effective alternative to tackle the issues of energy security and greenhouse gas emissions given that it is widely recognized as a clean fuel with high energy capacity. Hydrogen can be produced by various techniques such as thermochemical, hydrothermal, electrochemical, electrolytic, biological and photocatalytic methods as well as hybrid systems. New Dimensions in Production and Utilization of Hydrogen emphasizes on the research, development and innovations in the production and utilization of hydrogen in the industrial biorefining, hydrotreating and hydrogenation technologies, fuel cells, aerospace sector, pharmaceuticals, metallurgy, as well as bio-oil upgrading. Moreover, the supply chain analysis, lifecycle assessment, techno-economic analysis, as well as strengths and threats of global hydrogen market are covered in the book. This book provides many significant insights and scientific findings of key technologies for hydrogen production, storage and emerging applications. The book serves as a reference material for chemical and biochemical engineers, mechanical engineers, physicists, chemists, biologists, biomedical scientists and scholars working in the field of sustainable energy and materials.
A Practical Approach to Fracture Mechanics provides a concise overview on the fundamental concepts of fracture mechanics, discussing linear elastic fracture mechanics, fracture toughness, ductile fracture, slow crack propagation, structural integrity, and more. The book outlines analytical and experimental methods for determining the fracture resistance of mechanical and structural components, also demonstrating the use of fracture mechanics in failure analysis, reinforcement of cracked structures, and remaining life estimation. The characteristics of crack propagation induced by fatigue, stress-corrosion, creep, and absorbed hydrogen are also discussed. The book concludes with a chapter on the structural integrity analysis of cracked components alongside a real integrity assessment. This book will be especially useful for students in mechanical, civil, industrial, metallurgical, aeronautical and chemical engineering, and for professional engineers looking for a refresher on core principles.
Polymer Blend Nanocomposites for Energy Storage Applications presents the latest developments in polymer blend-based nanocomposites for applications in energy storage, covering theoretical concepts, preparation methods, characterization techniques, properties and performance. The book begins by introducing polymer blend-based nanocomposites, preparation methods, mechanisms, requirements, theory, modeling, and simulation, with subsequent sections covering the use of specific base materials, including elastomers, thermoplastics, thermoset polymers, and biodegradable polymers. Final sections covers polymer blend nanocomposites with different fillers, both for conducting polymers and non-conducting polymers. Devices discussed include capacitors, supercapacitors, batteries, fuel cells, and solar cells. Finally, other key aspects are considered, including the conversion from laboratory to industry and recycling and lifecycle assessment of polymer blend nanocomposites used in energy devices.
Multi-criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design, Second Edition, provides readers with tactics they can use to optimally select materials to satisfy complex design problems when they are faced with the vast range of materials available. Current approaches to materials selection range from the use of intuition and experience, to more formalized computer-based methods, such as electronic databases with search engines to facilitate the materials selection process. Recently, multi-criteria decision-making (MCDM) methods have been applied to materials selection, demonstrating significant capability for tackling complex design problems. This book describes the rapidly growing field of MCDM and its application to materials selection. It aids readers in producing successful designs by improving the decision-making process. This new edition updates and expands previous key topics, including new chapters on materials selection in the context of design problem-solving and multiple objective decision-making, also presenting a significant amount of additional case studies that will aid in the learning process.
Energetic Nanomaterials: Synthesis, Characterization, and Application provides researchers in academia and industry the most novel and meaningful knowledge on nanoenergetic materials, covering the fundamental chemical aspects from synthesis to application. This valuable resource fills the current gap in book publications on nanoenergetics, the energetic nanomaterials that are applied in explosives, gun and rocket propellants, and pyrotechnic devices, which are expected to yield improved properties, such as a lower vulnerability towards shock initiation, enhanced blast, and environmentally friendly replacements of currently used materials. The current lack of a systematic and easily available book in this field has resulted in an underestimation of the input of nanoenergetic materials to modern technologies. This book is an indispensable resource for researchers in academia, industry, and research institutes dealing with the production and characterization of energetic materials all over the world.
Power Converter with Digital Filter Feedback Control presents a logical sequence that leads to the identification, extraction, formulation, conversion, and implementation for the control function needed in electrical power equipment systems. This book builds a bridge for moving a power converter with conventional analog feedback to one with modern digital filter control and enlists the state space averaging technique to identify the core control function in analytical, close form in s-domain (Laplace). It is a useful reference for all professionals and electrical engineers engaged in electrical power equipment/systems design, integration, and management.
A Practical Guide to Plastics Sustainability: Concept, Solutions, and Implementation is a groundbreaking reference work offering a broad, detailed and highly practical vision of the complex concept of sustainability in plastics. The book's aim is to present a range of potential pathways towards more sustainable plastics parts and products, enabling the reader to further integrate the idea of sustainability into their design process. It begins by introducing the context and concept of sustainability, discussing perceptions, drivers of change, key factors, and environmental issues, before presenting a detailed outline of the current situation with types of plastics, processing, and opportunities for improved sustainability. Subsequent chapters focus on the different possibilities for improved sustainability, offering a step-by-step technical approach to areas including design, properties, renewable plastics, and recycling and re-use. Each of these pillars are supported by data, examples, analysis and best practice guidance. Finally, the latest developments and future possibilities are considered.
The Fundamentals and Applications of Light-Emitting Diodes: The Revolution in the Lighting Industry examines the evolution of LEDs, including a review of the luminescence process and background on solid state lighting. The book emphasizes phosphor-converted LEDs that are based on inorganic phosphors but explores different types of LEDs based on inorganic, organic, quantum dots, perovskite-structured materials, and biomaterials. A detailed description is included about the diverse applications of LEDs in fields such as lighting, displays, horticulture, biomedicine, and digital communication, as well as challenges that must be solved before using LEDs in commercial applications. Traditional light sources are fast being replaced by light-emitting diodes (LEDs). The fourth generation of lighting is completely dominated by LED luminaires. Apart from lighting, LEDs have extended their hold on other fields, such as digital communications, horticulture, medicine, space research, art and culture, display devices, and entertainment. The technological promises offered by LEDs have elevated them as front-runners in the lighting industry.
Multiscale Modeling of Additively Manufactured Metals: Application to Laser Powder Bed Fusion Process provides comprehensive coverage on the latest methodology in additive manufacturing (AM) modeling and simulation. Although there are extensive advances within the AM field, challenges to predictive theoretical and computational approaches still hinder the widespread adoption of AM. The book reviews metal additive materials and processes and discusses multiscale/multiphysics modeling strategies. In addition, coverage of modeling and simulation of AM process in order to understand the process-structure-property relationship is reviewed, along with the modeling of morphology evolution, phase transformation, and defect formation in AM parts. Residual stress, distortion, plasticity/damage in AM parts are also considered, with scales associated with the spatial, temporal and/or material domains reviewed. This book is useful for graduate students, engineers and professionals working on AM materials, equipment, process, development and modeling.
Modeling of Chemical Wear is a one-stop resource for students, researchers and professionals seeking quick and effective tribological evaluations of environmentally friendly and energy efficient products. This book considers optimizing additive combinations by proper methodology, bridging the gap between theory and practice. It defines effective approaches to evaluate antiwear chemical additives commonly used in industry, enhancing the mapping ability of their performance to reduce the extent of full scale evaluations.
Fluorinated Coatings and Finishes Handbook: The Definitive User's Guide, Second Edition, addresses important, frequently posed questions by end-user design engineers, coaters, and coatings suppliers on fluorinated coatings and finishes, thus enabling them to achieve superior product qualities and shorter product and process development times. The book provides broad coverage of these fluorinated polymer coatings, including the best known PTFE, polytetrafluoroethylene, first trademarked as Teflon (R) and ePTFE (GoreTex (R)). Their inherent qualities of low surface tension, non-stick, low friction, high melting point, and chemical inertness make fluoropolymer coatings widely desirable across thousands of industrial and consumer applications, but these properties also make it difficult to convert fluoropolymers to coatings that have sufficient adhesion to the substrate to be protected. In this book, readers learn how fluoropolymer coatings are used and made, about their pigments and fillers, binders, dispersion processes, additives, and solvents. The book includes substrate preparation, coating properties, baking and curing processes, performance tests, applications, and health and safety.
Nanotechnology for Oral Drug Delivery: From Concept to Applications discusses the current challenges of oral drug delivery, broadly revising the different physicochemical barriers faced by nanotechnolgy-based oral drug delivery systems, and highlighting the challenges of improving intestinal permeability and drug absorption. Oral delivery is the most widely used form of drug administration due to ease of ingestion, cost effectiveness, and versatility, by allowing for the accommodation of different types of drugs, having the highest patient compliance. In this book, a comprehensive overview of the most promising and up-to-date engineered and surface functionalized drug carrier systems, as well as opportunities for the development of novel and robust delivery platforms for oral drug administration are discussed. The relevance of controlling the physicochemical properties of the developed particle formulations, from size and shape to drug release profile are broadly reviewed. Advances in both in vitro and in vivo scenarios are discussed, focusing on the possibilities to study the biological-material interface. The industrial perspective on the production of nanotechnology-based oral drug delivery systems is also covered. Nanotechnology for Oral Drug Delivery: From Concept to Applications is essential reading for researchers, professors, advanced students and industry professionals working in the development, manufacturing and/or commercialization of nanotechnology-based systems for oral drug delivery, targeted drug delivery, controlled drug release, materials science and biomaterials, in vitro and in vivo testing of potential oral drug delivery technologies.
Digital controllers are part of nearly all modern personal, industrial, and transportation systems. Every senior or graduate student of electrical, chemical, or mechanical engineering should therefore be familiar with the basic theory of digital controllers. This new text covers the fundamental principles and applications of digital control engineering, with emphasis on engineering design. Fadali and Visioli cover analysis and design of digitally controlled systems and describe applications of digital control in a wide range of fields. With worked examples and Matlab applications in every chapter and many end-of-chapter assignments, this text provides both theory and practice for those coming to digital control engineering for the first time, whether as a student or practicing engineer.
Design for Additive Manufacturing is a complete guide to design tools for the manufacturing requirements of AM and how they can enable the optimization of process and product parameters for the reduction of manufacturing costs and effort. This timely synopsis of state-of-the-art design tools for AM brings the reader right up-to-date on the latest methods from both academia and industry. Tools for both metallic and polymeric AM technologies are presented and critically reviewed, along with their manufacturing attributes. Commercial applications of AM are also explained with case studies from a range of industries, thus demonstrating best-practice in AM design.
Troubleshooting Centrifugal Pumps and Their Systems, Second Edition, begins by discussing pump characteristics that can be reconfigured to suit changing conditions. Next, it provides guidance on when to withdraw a pump from service for repair and how it should be subsequently treated. It is an ideal resource for those who feel ill-equipped to analyze unsatisfactory pump system behavior, and is also a great reference for pump engineers, pump hydraulic designers, and graduate students who need systemic knowledge on centrifugal pumps and their systems.
Protected Metal Clusters: From Fundamentals to Applications surveys the fundamental concepts and potential applications of atomically precise metal clusters protected by organic ligands. As this class of materials is now emerging as a result of breakthroughs in synthesis and characterization that have taken place over the last few years, the book provides the first reference with a focus on these exciting novel nanomaterials, explaining their formation, and how, and why, they play an important role in the future of molecular electronics, catalysis, sensing, biological imaging, and medical diagnosis and therapy. |
You may like...
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Electrospinning: Nanofabrication and…
Binding, Xianfeng Wang, …
Paperback
R3,671
Discovery Miles 36 710
Nanofluid Applications for Advanced…
Shriram S. Sonawane, Mohsen Sharifpur
Paperback
R3,922
Discovery Miles 39 220
Material Modeling with the Visco-Plastic…
Carlos N. Tome, Ricardo A. Lebensohn
Paperback
R5,403
Discovery Miles 54 030
|