Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials
This monograph provides a concise overview of the main theoretical and numerical tools to solve homogenization problems in solids with finite elements. Starting from simple cases (linear thermal case) the problems are progressively complexified to finish with nonlinear problems. The book is not an overview of current research in that field, but a course book, and summarizes established knowledge in this area such that students or researchers who would like to start working on this subject will acquire the basics without any preliminary knowledge about homogenization. More specifically, the book is written with the objective of practical implementation of the methodologies in simple programs such as Matlab. The presentation is kept at a level where no deep mathematics are required.
T Level Engineering is written to cover the core elements of the new T Level Engineering qualifications. It provides essential information for T Level Engineering students and teachers, and will be useful as the student moves into higher education or an apprenticeship. The new T Level qualifications offer a realistic option to A Level and other vocational options. After completing a T Level in Engineering the student has a number of options including university courses and higher level apprenticeships. This book is written in an accessible fashion, no previous knowledge of engineering or technology is required, as all the technical terms are readily explained and a detailed glossary and list of abbreviations are included. Whether you are a student, tutor, or work placement manager you will surely find this book an enjoyable read and a handy reference book on your shelf. Andrew Livesey, MA, CEng is an experienced lecturer in engineering at Ashford College, Kent. He was a member of the DfE committee responsible for developing the T Levels and is a T Level Ambassador. His Routledge publications include: Basic Motorsport Engineering (2011), Advanced Motorsport Engineering (2012), The Repair of Vehicle Bodies (2018), Practical Motorsport Engineering (2018), Bicycle Engineering and Technology (2021) and Motorcycle Engineering (2021).
This book gathers selected papers presented at the 1st International Conference on Industrial Applications of Adhesives 2020 (IAA 2020). It covers a wide range of topics, including adhesive curing for electronic and automotive industries; adhesive testing with a torsion machine for rigorous mechanical properties determination; joint design using innovative techniques such as the meshless method; design methodologies in the automotive industry for joints under impact; temperature effects in joints typically found in civil engineering; and advanced nondestructive techniques such as terahertz spectroscopy to assess the durability of adhesive joints. Providing a review of the state-of the art in industrial applications of adhesives, the book serves as a valuable reference resource for researchers and graduate students interested in adhesive bonding.
This book presents the proceedings of the International Conference on Aerospace System Science and Engineering (ICASSE 2019), held in Toronto, Canada, on July 30-August 1, 2019, and jointly organized by the University of Toronto Institute for Aerospace Studies (UTIAS) and the Shanghai Jiao Tong University School of Aeronautics and Astronautics. ICASSE 2019 provided a forum that brought together experts on aeronautics and astronautics to share new ideas and findings. These proceedings present high-quality contributions in the areas of aerospace system science and engineering, including topics such as trans-space vehicle system design and integration, air vehicle systems, space vehicle systems, near-space vehicle systems, aerospace robotics and unmanned systems, communication, navigation and surveillance, aerodynamics and aircraft design, dynamics and control, aerospace propulsion, avionics systems, optoelectronic systems, and air traffic management.
Covering technological aspects as well as the suitability and
applicability of various kinds of uses, this handbook shows
optimization strategies, techniques and assembly pathways to
achieve the combination of complex, even three-dimensional
structures with simple manufacturing steps. The authors provide
information on markets, commercialization opportunities and aspects
of mass or large-scale production as well as design tools,
experimental techniques, novel materials, and ideas for future
improvements. Not only do they weigh up cost versus quantity, they
also consider CMOS and LIGA strategies.
This book presents central problems in the design, research and maintenance of large-size mining machines for open pits, mobile earth-moving machinery, hydraulic hammers for mining and civil engineering, and screening processes for bulk materials. It brings together the insights of numerous respected academics to offer a thorough and multifaceted overview of the topic. The first few chapters of the book deal with specific problems that frequently occur in machinery for open-pit mining. They focus on the resilience of large-size mining machines, degradation of steels used for supporting structures, and modelling of large-size rotary joints, as well as the noise hazards in connection with degradation processes. The book then moves on to discuss problems arising in earth-moving machinery, such as new approaches to the assessment of operation and maintenance, dynamic loads in front-end loader booms, and synchronic transfer of power from the engine to the driven wheels. The book concludes by discussing hydraulic hammers for mining and civil engineering, and screening processes for bulk materials that combine a vibroscreen with additional feed elements. The book is primarily intended for undergraduate and graduate mechanical engineering courses, but will also be of interest to researchers and mechanical engineers.
This book presents the latest research in the fields of reliability theory and its applications, providing a comprehensive overview of reliability engineering and discussing various tools, techniques, strategies and methods within these areas. Reliability analysis is one of the most multidimensional topics in the field of systems reliability engineering, and while its rapid development creates opportunities for industrialists and academics, it is also means that it is hard to keep up to date with the research taking place. By gathering findings from institutions around the globe, the book offers insights into the international developments in the field. As well as discussing the current areas of research, it also identifies knowledge gaps in reliability theory and its applications and highlights fruitful avenues for future research. Covering topics from life cycle sustainability to performance analysis of cloud computing, this book is ideal for upper undergraduate and postgraduate researchers studying reliability engineering.
This book presents the latest advances in flowsheet simulation of solids processes, focusing on the dynamic behaviour of systems with interconnected solids processing units, but also covering stationary simulation. The book includes the modelling of solids processing units, for example for comminution, sifting and particle formulation and also for reaction systems. Furthermore, it examines new approaches for the description of solids and their property distributions and for the mathematical treatment of flowsheets with multivariate population balances.
This book presents, in a uniform way, several problems in applied mechanics, which are analysed using the matrix theory and the properties of eigenvalues and eigenvectors. It reveals that various problems and studies in mechanical engineering produce certain patterns that can be treated in a similar way. Accordingly, the same mathematical apparatus allows us to study not only mathematical structures such as quadratic forms, but also mechanics problems such as multibody rigid mechanics, continuum mechanics, vibrations, elastic and dynamic stability, and dynamic systems. In addition, the book explores a wealth of engineering applications.
This book investigates a wide range of phase equilibrium modelling and calculation problems for compositional thermal simulation. Further, it provides an effective solution for multiphase isenthalpic flash under the classical framework, and it also presents a new flash calculation framework for multiphase systems, which can handle phase equilibrium and chemical reaction equilibrium simultaneously. The framework is particularly suitable for systems with many phases and reactions. In this book, the author shows how the new framework can be generalised for different flash specifications and different independent variables. Since the flash calculation is at the heart of various types of compositional simulation, the findings presented here will promote the combination of phase equilibrium and chemical equilibrium calculations in future simulators, aiming at improving their robustness and efficiency.
Cryogenic Technology and Applications describes the need for
smaller cryo-coolers as a result of the advances in the
miniaturization of electrical and optical devices and the need for
cooling and conducting efficiency. Cryogenic technology deals with
materials at low temperatures and the physics of their behavior at
these temps. The book demonstrates the ongoing new applications
being discovered for cryo-cooled electrical and optical sensors and
devices, with particular emphasis on high-end commercial
applications in medical and scientific fields as well as in the
aerospace and military industries.
This book details two elements of textile chemistry namely- sustainable/eco-friendly dyes and green chemistry. It presents latest topics in sustainable dyeing techniques, low impact dyeing methods, wool dyeing techniques and green chemistry. Certain case studies are also highlighted.
Written by the department head of materials science and engineering at MIT, this concise and stringent introduction takes readers from the fundamental theory to in-depth knowledge. It sets out with a theoretical scheme for the design of desirable periodic structures, then presents the experimental techniques that allow for fabrication of the periodic structure and exemplary experimental data. Subsequently, theory and numerical data are used to demonstrate how these periodic structures control the photonic, acoustic, and mechanical properties of materials, concluding with examples from these three important fields of applications. The result is must-have knowledge for both beginners and veterans in the field.
This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the 9th conference "Modern Engineering: Science and Education", held at the Peter the Great Saint Petersburg Polytechnic University in June 2020 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.
This book provides a detailed introduction to maintenance policies and the current and future research in these fields, highlighting mathematical formulation and optimization techniques. It comprehensively describes the state of art in maintenance modelling and optimization for single- and multi-unit technical systems, and also investigates the problem of the estimation process of delay-time parameters and how this affects system performance. The book discusses delay-time modelling for multi-unit technical systems in various reliability structures, examining the optimum maintenance policies both analytically and practically, focusing on a delay-time modelling technique that has been employed by researchers in the field of maintenance engineering to model inspection intervals. It organizes the existing work into several fields, based mainly on the classification of single- and multi-unit models and assesses the applicability of the reviewed works and maintenance models. Lastly, it identifies potential future research directions and suggests research agendas. This book is a valuable resource for maintenance engineers, reliability specialists, and researchers, as it demonstrates the latest developments in maintenance, inspection and delay-time-based maintenance modelling issues. It is also of interest to graduate and senior undergraduate students, as it introduces current theory and practice in maintenance modelling issues, especially in the field of delay-time modelling.
The book presents novel Computational Fluid Dynamics (CFD) techniques to compute offshore wind and tidal applications. The papers in this volume are based on a mini-symposium held at ECCOMAS 2018. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments amongst other topics.
This book is a practical guide to the uncertainty analysis of computer model applications. Used in many areas, such as engineering, ecology and economics, computer models are subject to various uncertainties at the level of model formulations, parameter values and input data. Naturally, it would be advantageous to know the combined effect of these uncertainties on the model results as well as whether the state of knowledge should be improved in order to reduce the uncertainty of the results most effectively. The book supports decision-makers, model developers and users in their argumentation for an uncertainty analysis and assists them in the interpretation of the analysis results.
This textbook presents all the mathematical and physical concepts needed to visualize and understand representation surfaces, providing readers with a reliable and intuitive understanding of the behavior and properties of anisotropic materials, and a sound grasp of the directionality of material properties. They will learn how to extract quantitative information from representation surfaces, which encode tremendous amounts of information in a very concise way, making them especially useful in understanding higher order tensorial material properties (piezoelectric moduli, elastic compliance and rigidity, etc.) and in the design of applications based on these materials. Readers will also learn from scratch concepts on crystallography, symmetry and Cartesian tensors, which are essential for understanding anisotropic materials, their design and application. The book describes how to apply representation surfaces to a diverse range of material properties, making it a valuable resource for material scientists, mechanical engineers, and solid state physicists, as well as advanced undergraduates in Materials Science, Solid State Physics, Electronics, Optics, Mechanical Engineering, Composites and Polymer Science. Moreover, the book includes a wealth of worked-out examples, problems and exercises to help further understanding.
Practical Micromechanics of Composite Materials provides an accessible treatment of micromechanical theories for the analysis and design of multi-phased composites. Written with both students and practitioners in mind and coupled with a fully functional MATLAB code to enable the solution of technologically relevant micromechanics problems, the book features an array of illustrative example problems and exercises highlighting key concepts and integrating the MATLAB code. The MATLAB scripts and functions empower readers to enhance and create new functionality tailored to their needs, and the book and code highly complement one another. The book presents classical lamination theory and then proceeds to describe how to obtain effective anisotropic properties of a unidirectional composite (ply) via micromechanics and multiscale analysis. Calculation of local fields via mechanical and thermal strain concentration tensors is presented in a unified way across several micromechanics theories. The importance of these local fields is demonstrated through the determination of consistent Margins of Safety (MoS) and failure envelopes for thermal and mechanical loading. Finally, micromechanics-based multiscale progressive damage is discussed and implemented in the accompanying MATLAB code.
This book gathers selected papers from the International Conference on Sustainable Design, Engineering, Management and Sciences (ICSDEMS 2019), held in Kuala Lumpur, Malaysia. It highlights recent advances in civil engineering and sustainability, bringing together researchers and professionals to address the latest, most relevant issues in these areas.
This book is a liber amicorum to Professor Sergei Konstantinovich Godunov and gathers contributions by renowned scientists in honor of his 90th birthday. The contributions address those fields that Professor Godunov is most famous for: differential and difference equations, partial differential equations, equations of mathematical physics, mathematical modeling, difference schemes, advanced computational methods for hyperbolic equations, computational methods for linear algebra, and mathematical problems in continuum mechanics. |
You may like...
Democracy Works - Re-Wiring Politics To…
Greg Mills, Olusegun Obasanjo, …
Paperback
Living While Black - The Essential Guide…
Guilaine Kinouani
Paperback
|