![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials
This book, the first in the Woodhead Publishing Reviews: Mechanical Engineering Series, is a collection of high quality articles (full research articles, review articles and cases studies) with a special emphasis on research and development in mechatronics and manufacturing engineering. Mechatronics is the blending of mechanical, electronic, and computer engineering into an integrated design. Today, mechatronics has a significant and increasing impact on engineering with emphasis on the design, development and operation of manufacturing engineering systems. The main objective of this interdisciplinary engineering field is the study of automata from an engineering perspective, thinking on the design of products and manufacturing processes and systems. Mechatronics and manufacturing systems are well established and executed within a great number of industries including aircraft, automotive and aerospace industries; machine tools, moulds and dies product manufacturing, computers, electronics, semiconductor and communications, and biomedical.
The failure of any welded joint is at best inconvenient and at worst can lead to catastrophic accidents. Fracture and fatigue of welded joints and structures analyses the processes and causes of fracture and fatigue, focusing on how the failure of welded joints and structures can be predicted and minimised in the design process. Part one concentrates on analysing fracture of welded joints and structures, with chapters on constraint-based fracture mechanics for predicting joint failure, fracture assessment methods and the use of fracture mechanics in the fatigue analysis of welded joints. In part two, the emphasis shifts to fatigue, and chapters focus on a variety of aspects of fatigue analysis including assessment of local stresses in welded joints, fatigue design rules for welded structures, k-nodes for offshore structures and modelling residual stresses in predicting the service life of structures. With its distinguished editor and international team of contributors, Fracture and fatigue of welded joints and structures is an essential reference for mechanical, structural and welding engineers, as well as those in the academic sector with a research interest in the field.
Computer technology has transformed textiles from their design through to their manufacture and has contributed to significant advances in the textile industry. Computer technology for textiles and apparel provides an overview of these innovative developments for a wide range of applications, covering topics including structure and defect analysis, modelling and simulation, and apparel design. The book is divided into three parts. Part one provides a review of different computer-based technologies suitable for textile materials, and includes chapters on computer technology for yarn and fabric structure analysis, defect analysis and measurement. Chapters in part two discuss modelling and simulation principles of fibres, yarns, textiles and garments, while part three concludes with a review of computer-based technologies specific to apparel and apparel design, with themes ranging from 3D body scanning to the teaching of computer-aided design to fashion students. With its distinguished editor and international team of expert contributors, Computer technology for textiles and apparel is an invaluable tool for a wide range of people involved in the textile industry, from designers and manufacturers to fibre scientists and quality inspectors.
The textile industry is increasingly based on ongoing innovation and development of higher performance products, and the field of functional textiles is no exception. This book explores the development of textiles with a wide range of functions, with the aim of improving the performance of the product in terms of the protection and health benefits that it can offer. The book is split into two parts. Part one focuses on functional textiles for improved performance and protection, with chapters reviewing antistatic, flame retardant and infrared functional textiles, among many others. Chapters in part two examine the uses of functional textiles in a medical context, including superhydrophobic materials, antibacterial textiles and insect-repellent materials. With its distinguished editors and contributions from some of the world's leading authorities, Functional textiles for improved performance, protection and health is invaluable for textile scientists, technologists and engineers as well as those designing and manufacturing textiles. It is also a suitable reference for the academic sector.
Electrical motor products reviews the energy efficiency management laws for electrical motor products in United States, European Union (EU) and China. The energy efficiency certification requirements for the electrical motor products vary from country to country and are summarised here. International standards, testing methods and certification requirements for specific electrical motor products are discussed, including electric motors, pumps and fans. Finally, methods for improving energy efficiency are examined.
Understanding the properties of polymer carbon nanotube (CNT) composites is the key to these materials finding new applications in a wide range of industries, including but not limited to electronics, aerospace and biomedical/bioengineering. Polymer-carbon nanotube composites provides comprehensive and in-depth coverage of the preparation, characterisation, properties and applications of these technologically interesting new materials. Part one covers the preparation and processing of composites of thermoplastics with CNTs, with chapters covering in-situ polymerization, melt processing and CNT surface treatment, as well as elastomer and thermoset CNT composites. Part two concentrates on properties and characterization, including chapters on the quantification of CNT dispersion using microscopy techniques, and on topics as diverse as thermal degradation of polymer/CNT composites, the use of rheology, Raman spectroscopy and multi-scale modelling to study polymer/CNT composites, and CNT toxicity. In part three, the applications of polymer/CNT composites are reviewed, with chapters on specific applications such as in fibres and cables, bioengineering applications and conductive polymer CNT composites for sensing. With its distinguished editors and international team of contributors, Polymer-carbon nanotube composites is an essential reference for scientists, engineers and designers in high-tech industry and academia with an interest in polymer nanotechnology and nanocomposites.
One of the major reasons for composite failure is a breakdown of the bond between the reinforcement fibres and the matrix. When this happens, the composite loses strength and fails. By engineering the interface between the natural fibres and the matrix, the properties of the composite can be manipulated to give maximum performance. Interface engineering of natural fibre composites for maximum performance looks at natural (sustainable) fibre composites and the growing trend towards their use as reinforcements in composites. Part one focuses on processing and surface treatments to engineer the interface in natural fibre composites and looks in detail at modifying cellulose fibre surfaces in the manufacture of natural fibre composites, interface tuning through matrix modification and preparation of cellulose nanocomposites. It also looks at the characterisation of fibre surface treatments by infrared and raman spectroscopy and the effects of processing and surface treatment on the interfacial adhesion and mechanical properties of natural fibre composites. Testing interfacial properties in natural fibre composites is the topic of part two which discusses the electrochemical characterisation of the interfacial properties of natural fibres, assesses the mechanical and thermochemical properties and moisture uptake behaviour of natural fibres and studies the fatigue and delamination of natural fibre composites before finishing with a look at Raman spectroscopy and x-ray scattering for assessing the interface in natural fibre composites With its distinguished editor and international team of contributors Interface engineering of natural fibre composites for maximum performance is an invaluable resource to composite manufacturers and developers, materials scientists and engineers and anyone involved in designing and formulating composites or in industries that use natural fibre composites.
Fracture Mechanics covers classical and modern methods and introduce new/unique techniques, making this text an important resource for anyone involved in the study or application of fracture mechanics. Using insights from leading experts in fracture mechanics, it provides new approaches and new applications to advance the understanding of crack initiation and propagation. With a concise and easily understood mathematical treatment of crack tip fields, this book provides the basis for applying fracture mechanics in solving practical problems. It features a unique coverage of bi-material interfacial cracks, with applications to commercially important areas of composite materials, layered structures, and microelectronic packaging. A full chapter is devoted to the cohesive zone model approach, which has been extensively used in recent years to simulate crack propagation. A unified discussion of fracture criteria involving nonlinear/plastic deformations is also provided. The book is an invaluable resource for mechanical, aerospace, civil, and biomedical engineers in the field of mechanics as well as for graduate students and researchers studying mechanics.
Buckling and Ultimate Strength of Ship and Ship-like Floating Structures provides an integrated state-of-the-art evaluation of ship structure mechanics including buckling, plastic failure, ultimate strength, and ultimate bending moments. For the design of any industrial product, it is necessary to understand the fundamentals in the failure behavior of structures under extreme loads. Significant developments have been made in understanding the analysis method of plastic collapse and behavior and strength of structures accompanied by buckling. Written by two of the foremost experts in international ship design and ocean engineering, this book introduces fundamental theories and methods as well as new content on the behavior of buckling/plastic collapse that help explain analysis like the initial imperfections produced by welding and the ultimate strength of plates, double bottom structures of bulk carriers, and ship and FPSO hull girders in longitudinal bending. Rounding out with additional coverage on floating structures such as oil and gas platforms and LNG/FLNG structural characteristics, Buckling and Ultimate Strength of Ship and Ship-like Floating Structures is a must-have resource for naval architects and other marine engineering professionals seeking to gain an in-depth understanding of the technological developments in this area.
Progress in Rubber Nanocomposites provides an up-to-date review on the latest advances and developments in the field of rubber nanocomposites. It is intended to serve as a one-stop reference resource to showcase important research accomplishments in the area of rubber nanocomposites, with particular emphasis on the use of nanofillers. Chapters discuss major progress in the field and provide scope for further developments that will have an impact in the industrial research area. Global leaders and researchers from industry, academia, government, and private research institutions contribute valuable information.
Industrial Applications of Carbon Nanotubes covers the current applications of carbon nanotubes in various industry sectors, from the military to visual display products, and energy harvesting and storage. It also assesses the opportunities and challenges for increased commercialization and manufacturing of carbon nanotubes in the years ahead. Real-life case studies illustrate how carbon nanotubes are used in each industry sector covered, providing a valuable resource for scientists and engineers who are involved and/or interested in carbon nanotubes in both academia and industry. The book serves as a comprehensive guide to the varied uses of carbon nanotubes for specialists in many related fields, including chemistry, physics, biology, and textiles.
Supra-materials Nanoarchitectonics provides the latest information on design at the nanoscale, presenting a range of the new challenges that arise as the manipulation techniques that work at the macro- and micro-scale do not work at the nanoscale. The term nanoarchitectonics, coined by Japan's National Institute for Materials Science (NIMS), describes the organized interactions required at the nanoscale, replacing the traditional structure-building approach used in materials design. Nanoarchitectonics approaches material design via a profound understanding of the interactions between individual nanostructures and their organization. As the nanoarchitectonics paradigm fits well with the discipline of supramolecular chemistry, this book brings together these two approaches to demonstrate the potential of supramolecular nanoarchitectonics in the development of new materials, both at the nano- and macro-scale.
The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases systematically introduces the theory, code design, and application of the material point method, covering subjects such as the spatial and temporal discretization of MPM, frequently-used strength models and equations of state of materials, contact algorithms in MPM, adaptive MPM, the hybrid/coupled material point finite element method, object-oriented programming of MPM, and the application of MPM in impact, explosion, and metal forming. Recent progresses are also stated in this monograph, including improvement of efficiency, memory storage, coupling/combination with the finite element method, the contact algorithm, and their application to problems.
Frequency Analysis of Vibration Energy Harvesting Systems aims to present unique frequency response methods for analyzing and improving vibration energy harvesting systems. Vibration energy is usually converted into heat energy, which is transferred to and wasted in the environment. If this vibration energy can be converted into useful electric energy, both the performance and energy efficiency of machines, vehicles, and structures will be improved, and new opportunities will open up for powering electronic devices. To make use of ambient vibration energy, an effective analysis and design method is established and developed in this book. The book covers a wide range of frequency response analysis methods and includes details of a variety of real-life applications. MATLAB programming is introduced in the first two chapters and used in selected methods throughout the book. Using the methods studied, readers will learn how to analyze and optimize the efficiency of vibration energy systems. This book will be ideal for postgraduate students and researchers in mechanical and energy engineering.
Permeability Properties of Plastics and Elastomers, Fourth Edition provides a comprehensive collection of graphical multipoint and tabular data covering the permeation of liquids, vapors, and gases through plastic or polymeric materials, such as films, membranes, and containers. This updated edition includes an entirely new chapter on sustainable and biodegradable polymers and an extensive introductory section covering fatigue, what it is, how it is measured, and the fundamentals of permeation and permeability properties. Foundational information is also provided on the production of films, containers, membranes, and the markets and applications for these materials.
The Boundary Element Method for Engineers and Scientists: Theory and Applications is a detailed introduction to the principles and use of boundary element method (BEM), enabling this versatile and powerful computational tool to be employed for engineering analysis and design. In this book, Dr. Katsikadelis presents the underlying principles and explains how the BEM equations are formed and numerically solved using only the mathematics and mechanics to which readers will have been exposed during undergraduate studies. All concepts are illustrated with worked examples and problems, helping to put theory into practice and to familiarize the reader with BEM programming through the use of code and programs listed in the book and also available in electronic form on the book's companion website.
Advanced High Strength Natural Fibre Composites in Construction provides the basic framework and knowledge required for the efficient and sustainable use of natural fiber composites as a structural and building material, along with information on the ongoing efforts to improve the efficiency of use and competitiveness of these composites. Areas of particular interest include understanding the nature and behavior of raw materials and their functional contributions to the advanced architectures of high strength composites (Part 1), discussing both traditional and novel manufacturing technologies for various advanced natural fiber construction materials (Part 2), examining the parameters and performance of the composites (Part 3), and finally commenting on the associated codes, standards, and sustainable development of advanced high strength natural fiber composites for construction. This exposition will be based on well understood environmental science as it applies to construction (Part 4). The book is aimed at academics, research scholars, and engineers, and will serve as a most valuable text or reference book that challenges undergraduate and postgraduate students to think beyond standard practices when designing and creating novel construction materials.
Handbook of Advances in Braided Composite Materials: Theory, Production, Testing and Applications focuses on the fundamentals of these materials and their associated technology. It provides a one-stop resource that outlines all the significant issues about structural braiding, providing readers with the means by which to produce, test, and design braided composite material structures. It documents the latest research findings into these advanced materials and provides new ideas to encourage greater use of the technology.
Orthodontic Applications of Biomaterials: A Clinical Guide reviews the applications of biomaterials and their effects on enamel preparation, bonding, bracket and archwire ligation, mechanotherapy, debonding, and long-term enamel structural, color, and surface effects. The book provides a step-by-step analysis of the phenomena occurring, their clinical importance, and their underlying cause without the use of complex mathematical or physical-chemical analyses, with the goal of providing 'digestible' evidence for the clinician.
|
You may like...
Multimedia Data Mining and Analytics…
Aaron K Baughman, Jiang Gao, …
Hardcover
Artificial Intelligence for Neurological…
Ajith Abraham, Sujata Dash, …
Paperback
R3,925
Discovery Miles 39 250
Controlling Epidemics With Mathematical…
Abraham Varghese, Eduardo M. Lacap, Jr., …
Hardcover
R6,677
Discovery Miles 66 770
SHRM-CP/SHRM-SCP Certification…
Beverly Dance, Dory Willer, …
Paperback
R1,119
Discovery Miles 11 190
Artificial Intelligence for Sustainable…
Margherita Pagani, Renaud Champion
Hardcover
R3,234
Discovery Miles 32 340
101 Ready To Use Microsoft Excel Macros
John Michaloudis, Bryan Hong
Hardcover
R936
Discovery Miles 9 360
|