Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials
This volume contains the Proceedings of the RILEM TC 252-CMB International Symposium on the Chemo-Mechanical Characterization of Bituminous Materials. The Symposium was attended by researchers and practitioners from different fields presenting the latest findings in the chemical, mechanical, and microstructural characterization of bituminous materials. The book offers new and cutting edge papers on innovative techniques for the characterization of bituminous materials, gaining new insights into current issues such as effects of aging, moisture, and temperature.
This book is the first to focus specifically on cancer nanotheranostics. Each of the chapters that make up this comprehensive volume is authored by a researcher, clinician, or regulatory agency member known for their expertise in this field. Theranostics, the technology to simultaneously diagnose and treat a disease, is a nascent field that is growing rapidly in this era of personalized medicine. As the need for cost-effective disease diagnosis grows, drug delivery systems that can act as multifunctional carriers for imaging contrast and therapy agents could provide unique breakthroughs in oncology. Nanotechnology has enabled the development of smart theranostic platforms that can concurrently diagnose disease, start primary treatment, monitor response and initiate secondary treatments if required. In oncology, chemotherapeutics have been routinely used. Some drugs have proven effective but all carry risks of adverse side effects. There is growing interest in using remotely triggered drug delivery systems to limit cytotoxicity in the diseased area. This book reviews the use of theranostic nanoparticles for cancer applications over the past decade. First, it briefly discusses the challenges and limitations of conventional cancer treatments, and presents an overview of the use of nanotechnology in treating cancer. These introductory chapters are followed by those exploring cancer diagnosis and a myriad of delivery methods for nanotherapeutics. The book also addresses multifunctional platforms, treatment monitoring, and regulatory considerations. As a whole, the book aims to briefly summarize the development and clinical potential of various nanotheranostics for cancer applications, and to delineate the challenges that must be overcome for successful clinical development and implementation of such cancer theranostics.
Scaffold bone replacements are a safe and effective way to cure bone abnormalities, and porous scaffolds can be manufactured using additive manufacturing technology. When scaffolds are implanted in a damaged location, they quickly connect to the host tissue and integrate, stimulating bone production and development. The qualities of porous titanium must be matched to the properties of human bones (i.e., age, sex, and hormones). Using subtractive manufacturing, it is extremely difficult to create the complicated porous structure necessary for the desired characteristic. The Handbook of Research on Advanced Functional Materials for Orthopedic Applications highlights current research pertinent to the orthopedic applications of additive-produced scaffolds in order to consider the latest breakthroughs in the synthesis and multifunctional applications of scaffolds. Covering key topics such as tissue, additive manufacturing, and biomaterial, this major reference work is ideal for industry professionals, engineers, researchers, academicians, practitioners, scholars, instructors, and students.
This collection presents papers on the science, engineering, and technology of shape castings, with contributions from researchers worldwide. Among the topics that are addressed are structure-property-performance relationships, modeling of casting processes, and the effect of casting defects on the mechanical properties of cast alloys.
This book effectively links the latest scientific advances to current technological applications of polymers, mainly focusing on biodegradable polymers obtained from biomass. The individual chapters were written by academic and industry researchers alike, introducing readers to topics that have received little attention in the literature to date. Key topics covered include polymers used in various areas such as food packaging, pharmaceuticals, energy production and the cosmetics industry, as well as the treatment of aqueous effluents.
This book presents a snapshot of the state-of-art in the field of turbulence modeling, with an emphasis on numerical methods. Topics include direct numerical simulations, large eddy simulations, compressible turbulence, coherent structures, two-phase flow simulation and many more. It includes both theoretical contributions and experimental works, as well as chapters derived from keynote lectures, presented at the fourth Turbulence and Interactions Conference (TI 2015), which was held on June 11-14 in Cargese, Corsica, France. This multifaceted collection, which reflects the conferences emphasis on the interplay of theory, experiments and computing in the process of understanding and predicting the physics of complex flows and solving related engineering problems, offers a timely guide for students, researchers and professionals in the field of applied computational fluid dynamics, turbulence modeling and related areas.
This book presents a selection of papers from the industrial track of ISMIS 2020. The selection emphasizes broad applicability of artificial intelligence (AI) technologies in various industrial fields. The aim of the book is to fertilize preliminary ideas of readers on the application of AI by means of already successfully implemented application examples. Furthermore, the development of new ideas and concepts shall be motivated by the variety of different application examples. The spectrum of the presented contributions ranges from education and training, industrial applications in production and logistics to the development of new approaches in basic research, which will further expand the possibilities of future applications of AI in industrial settings. This broad spectrum gives readers working in the industrial as well as the academic field a good overview of the state of the art in the field of methodologies for intelligent systems.
This book describes load modeling approaches for complex work pieces and batch forgings, and demonstrates analytical modeling and data-driven modeling approaches for known and unknown complex forging processes. It overcomes the current shortcomings of modeling, analysis and control approaches, presenting contributions in three major areas: In the first, several novel modeling approaches are proposed: a process/shape-decomposition modeling method to help estimate the deformation force; an online probabilistic learning machine for the modeling of batch forging processes; and several data-driven identification and modeling approaches for unknown forging processes under different work conditions. The second area develops model-based dynamic analysis methods to derive the conditions of stability and creep. Lastly, several novel intelligent control methods are proposed for complex forging processes. One of the most serious problems in forging forming involves the inaccurate forging conditions, velocity and position offered by the hydraulic actuator due to the complexity of both the deformation process of the metal work piece and the motion process of the hydraulic actuator. The book summarizes the current weaknesses of modeling, analysis and control approaches. are summarized as follows: a) With the current modeling approaches it is difficult to model complex forging processes with unknown parameters, as they only model the dynamics in local working areas but do not effectively model unknown nonlinear systems across multiple working areas; further, they do not take the batch forging process into account, let alone its distribution modeling. b) All previous dynamic analysis studies simplify the forging system to having a single-frequency pressure fluctuation and neglect the influences of non-linear load force. Further, they fail to take the flow equation in both valves and cylinders into account. c) Conventional control approaches only consider the linear deformation force and pay no attention to sudden changes and the motion synchronization for the multi-cylinder system, making them less effective for complex, nonlinear time-varying forging processes subject to sudden changes.
This book aims at reviewing recent progress in the direction of algebraic and symbolic computation methods for functional systems, e.g. ODE systems, differential time-delay equations, difference equations and integro-differential equations. In the nineties, modern algebraic theories were introduced in mathematical systems theory and in control theory. Combined with real algebraic geometry, which was previously introduced in control theory, the past years have seen a flourishing development of algebraic methods in control theory. One of the strengths of algebraic methods lies in their close connections to computations. The use of the above-mentioned algebraic theories in control theory has been an important source of motivation to develop effective versions of these theories (when possible). With the development of computer algebra and computer algebra systems, symbolic methods for control theory have been developed over the past years. The goal of this book is to propose a partial state of the art in this direction. To make recent results more easily accessible to a large audience, the chapters include materials which survey the main mathematical methods and results and which are illustrated with explicit examples.
This collection features papers presented at the 146th Annual Meeting & Exhibition of The Minerals, Metals & Materials Society.
This book marries stem cell biology, tissue engineering, and regenerative biology into a single, interdisciplinary volume. The chapters also explore embryonic stem cells, induced pluripotent stem cells, cardiovascular regeneration, skeletal development, inflammation, polymeric biomaterials, neural injury, cartilage regeneration, regeneration in ambystoma, models for regeneration using salamander and zebrafish, and more. The volume also discusses recent advances and their potential in developing future therapies. Innovations in Molecular Mechanisms and Tissue Engineering combines perspectives from the biomedical, bioengineering, and medical fields to present a cutting-edge, multifaceted picture of the tissue engineering and regenerative medicine fields. This installment of Springer's Stem Cell Biology and Regenerative Medicine series is ideal for scientists, clinicians, and researchers in the fields of stem cell biology, regenerative medicine, biomedical engineering, and tissue engineering.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics.Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or& nbsp;scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students.
This book highlights innovative solutions together with various techniques and methods that can help support the manufacturing sector to excel in economic, social, and environmental terms in networked business environments. The book also furthers understanding of sustainable manufacturing from the perspective of value creation in manufacturing networks, by capitalizing on the outcomes of the European 'Sustainable Value Creation in Manufacturing Networks' project. New dynamics and uncertainties in modern markets call for innovative solutions in the global manufacturing sector. While the manufacturing sector is traditionally driven by technology, it also requires other managerial and organizational solutions in terms of network governance, business models, sustainable solution development for products and services, performance management portals, etc., which can provide major competitive advantages for companies. At the same time, the manufacturing industry is subject to a change process, where business networks play a major role in value-creating processes. By far the biggest challenge in this context is making value creation a sustainable process where economic, social, and environmental demands are met. Managing product and service-related business operations in manufacturing networks thus brings different challenges that cannot purely be resolved using traditional methods, and techniques. This book is an outcome of a European project funded by the European Commission, and performed by a dedicated R&D consortium comprised of some leading Research institutions and Industrial partners.
This book offers a short and concise introduction to the many facets of chaos theory. While the study of chaotic behavior in nonlinear, dynamical systems is a well-established research field with ramifications in all areas of science, there is a lot to be learnt about how chaos can be controlled and, under appropriate conditions, can actually be constructive in the sense of becoming a control parameter for the system under investigation, stochastic resonance being a prime example. The present work stresses the latter aspects and, after recalling the paradigm changes introduced by the concept of chaos, leads the reader skillfully through the basics of chaos control by detailing the relevant algorithms for both Hamiltonian and dissipative systems, among others. The main part of the book is then devoted to the issue of synchronization in chaotic systems, an introduction to stochastic resonance, and a survey of ratchet models. In this second, revised and enlarged edition, two more chapters explore the many interfaces of quantum physics and dynamical systems, examining in turn statistical properties of energy spectra, quantum ratchets, and dynamical tunneling, among others. This text is particularly suitable for non-specialist scientists, engineers, and applied mathematical scientists from related areas, wishing to enter the field quickly and efficiently. From the reviews of the first edition: This book is an excellent introduction to the key concepts and control of chaos in (random) dynamical systems [...] The authors find an outstanding balance between main physical ideas and mathematical terminology to reach their audience in an impressive and lucid manner. This book is ideal for anybody who would like to grasp quickly the main issues related to chaos in discrete and continuous time. Henri Schurz, Zentralblatt MATH, Vol. 1178, 2010.
This book presents the proceedings of the International Conference on Recent Trends in Materials and Devices, which was conceived as a major contribution to large-scale efforts to foster Indian research and development in the field in close collaboration with the community of non-resident Indian researchers from all over the world. The research articles collected in this volume - selected from among the submissions for their intrinsic quality and originality, as well as for their potential value for further collaborations - document and report on a wide range of recent and significant results for various applications and scientific developments in the areas of Materials and Devices. The technical sessions covered include photovoltaics and energy storage, semiconductor materials and devices, sensors, smart and polymeric materials, optoelectronics, nanotechnology and nanomaterials, MEMS and NEMS, as well as emerging technologies.
This book systematically provides an overview of the use of a wide range of spectroscopic methods (Mid- and Near-Infrared, Infrared Emission, Raman, Solid-State Magic Angle Spinning Nuclear Magnetic Resonance, X-ray Photoelectron, Extended X-ray Absorption Fine Structure, X-ray Absorption Near Edge, Electron Spin and Moessbauer spectroscopy) to investigate kaolin minerals (kaolinite, dickite, nacrite and halloysite) and their modifications (intercalation compounds, nanocomposites and other modifications).
Focusing on the theory and techniques of digital design and manufacturing for turbine blade investment casting, this book systematically summarizes the advances in applications in this field. It describes advanced digital design theory and methods and provides practical technical references for investment casting die design and manufacturing. The theories, methods and cases presented here are largely derived from the author's practical engineering experience and the research he and his team have carried out since the 1990s. It includes academic papers, technical reports and patent literature, and provides a valuable guide to engineers involved in the die-design process. Given its comprehensive coverage, the book makes a significant contribution to investment-casting die design and aero-engine blade manufacturing, while at the same time promoting the development of aero-engine manufacturing technologies
This book presents a systematic overview of the most relevant nanomaterials and their respective intrinsic properties that have been highly explored by the scientific community and pharmaceutical companies in several different modalities for cancer therapy and bioimaging. The chapters explore the synergistic effects provided by the different nanostructured materials and highlight the main in vitro and in vivo therapeutic achievements on cancer. This work also provides relevant discussion about the recent progresses and future challenges that nanotechnology faces on the conception of more efficient nanoformulations against primary tumors, circulating cancer cells and metastases.
Reactive and functional polymers are manufactured with the aim of improving the performance of unmodified polymers or providing functionality for different applications. These polymers are created mainly through chemical reactions, but there are other important modifications that can be carried out by physical alterations in order to obtain reactive and functional polymers. This volume presents a comprehensive analysis of these reactive and functional polymers. Reactive and Functional Polymers Volume Four considers surface interactions, modifications and reactions, as well as reactive processes for recycling polymers and their biodegradability and compostability. World renowned researchers from Argentina, Austria, China, Egypt, France, Iran, Italy, Nepal and United States have participated in this book. With its comprehensive scope and up-to-date coverage of issues and trends in Reactive and Functional Polymers, this is an outstanding book for students, professors, researchers and industrialists working in the field of polymers and plastic materials.
The 20th Century World has been transformed by the discovery and
use of plastics. Today plastic materials are used in a wide variety
of applications, from building and construction to packaging, from
sports equipment to transportation. The vast number of plastics
materials discovered over the past 40 years and their wide range of
properties make them uniquely suited to a very broad spectrum of
applications. This combination of the successful utilisation of the materials
and the number of types of material available has led to the growth
of an array of technical terms within the field. The "Dictionary"
is intended as a reference tool for readers to negotiate these
terms. The main part of the "Technical Dictionary of Plastics
Materials" presents a comprehensive set of extended definitions of
technical terms relating to all facts of the materials aspect of
plastics technology. The definitions cover the nature of plastics
materials, their composition (including relevent non-polymeric
componants and additives, such as stabilisers, fillers, colourants,
etc), their properties (including methods of property
determination, testing, and evaluation), their applications, and
their handling and behaviour in processing. In many cases reference
is given to the relevant technical standards from the International
(ISO), British (BSI), and American (ASTM) standards. In addition to the main part of the "Dictionary" containing the
definitions there are two further sections. The first gives
explanations of the abbreviated terms (letter symbols) used for the
parent polymer and for the other constituents of plastics
materials, while the second identifies the trade names of a number
of plastics materials and their components.
This book introduces the concept of sensing, smart and sustainable systems (S3 systems) to support the design and redesign of products, services, business and manufacturing processes, manufacturing systems, and enterprises. The concept of S3 systems theory is introduced and explained in detail to support designers and engineers in their development task. This approach is embraced in the implementation of emergent Information and communication technologies and artificial intelligence techniques. The text helps the reader to understand the relationship between intelligent manufacturing, S3 systems and Industry 4.0. It presents a review of current approaches to design and development of technology-based products. Finally, it enlarges on the sensing, smart and sustainable systems theory to give examples of S3 systems as case studies.
This book offers in-depth insights into the photochemical behavior of multicomponent polymeric-based materials, with a particular emphasis on the photodegradation and photostabilization of these materials. Studying various classes of materials bases such as polysaccharides, wood, synthetic polymers, rubber blends, and nanocomposites, it offers a valuable reference source for graduate and postgraduate students, engineering students, research scholars and polymer engineers working in industry.
This book introduces the latest research regarding the adsorption of heavy metals, toxic ions, and organic compounds at the interfaces of water/minerals, such as mineralogical characterizations, surface chemistry, and modification of natural minerals as adsorbents, as well as the adsorption of cations, anions, and organic compounds in water. Presenting findings by the authors and their co-workers, the book helps readers grasp the principals and benefits of using minerals for water treatment, as well as the advanced technologies in the area developed over last 30 years, especially the last 10 years. |
You may like...
Aggregation-Induced Emission: Materials…
Michiya Fujiki, bin Liu, …
Hardcover
R4,787
Discovery Miles 47 870
Productivity with Health, Safety, and…
Lakhwinder Pal Singh, Arvind Bhardwaj, …
Hardcover
R5,244
Discovery Miles 52 440
Sustainable Nanotechnology and the…
Najm Shamim, Virender K. Sharma
Hardcover
R5,423
Discovery Miles 54 230
Biobased Monomers, Polymers, and…
Patrick B. Smith, Richard B. Gross
Hardcover
R5,420
Discovery Miles 54 200
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
|