![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials
This book is a description of why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory " provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.
Aerodynamics is a science that improves the ability to understand theoretical basics and apply fundamental physics in real-life problems. The study of the motion of air, both externally over an airplane wing and internally over a scramjet engine intake, has acknowledged the significance of studying both incompressible and compressible flow aerodynamics. Aspects and Applications of Incompressible and Compressible Aerodynamics discusses all aspects of aerodynamics from application to theory. It further presents the equations and mathematical models used to describe and characterize flow fields as well as their thermodynamic aspects and applications. Covering topics such as airplane configurations, hypersonic vehicles, and the parametric effect of roughness, this premier reference source is an essential resource for engineers, scientists, students and educators of higher education, military experts, libraries, government officials, researchers, and academicians.
This book includes an international group of researchers who present the latest achievements in the field of enzyme, immune system, and microbial and nano-biosensors. It highlights the experimental evidence for formation of biological fuel cells (BFCs)-which has a dual purpose - as a device that produces electricity and the systems which produce it simultaneously cleaning up the environment from polluting organic compounds. Considering the work in the field of macro, micro and nano-biosensors, considerable attention is paid to the use of nanomaterials for the modification of working electrodes. Nanomaterials in some cases can significantly improve the parameters of analytical systems. Readers will be interested in the projection of the presented theoretical and experimental materials in the field of practical application of modern analytical developments. The presented results in many cases imply the possibility of using the created models of macro, micro and nano-biosensors, and biofuel elements in the field of health, and protection/restoration of the environment. It includes information about all existing types of transducers of signals in biosensors - electrochemical, optical and quantum-optics, thermoelectric, data of atomic force microscopy, piezoelectric, and more. On the basis of these principles, descriptions are given about the functioning of macro, micro and nano- biosensors for the detection of compounds used in medicine, detection of compounds that clog the environment, and thus affect human health, for compounds that are potentially the basis for the production of drugs, for the selection of compounds that have medicinal activity, for immunodetection, and to assess the quality of food. These questions form the basis of research carried out in the field of biosensors in the world. Since the described models of biosensors have high sensitivity, high measurement speed and selectivity, the described results attract the attention of both the ordinary reader and business class specialists who create and implement analytical technologies. This book is very useful for researchers in life sciences, chemical sciences, physics, and engineering. In addition, it will be useful for the persons working in industry. Advanced technologies specialists will be attracted by the novelty of the proposed solutions and their relevance and ease of implementation. Since the studies contain sections describing the parameters of different biosensors, BFCs, they are easily navigated into assessing the effectiveness of the practical use of the proposed device. The relevant sections indicate such characteristics as detection ranges, life span, type of biological material used, the method of formation of the bio-receptor part. These parameters are of interest to both developers of new models of biosensors and BFC, and their manufacturers.
This book presents a concept for fostering resource efficient manufacturing. The protection of our environment demands a more responsible use of natural resources, and a higher degree of transparency along manufacturing value chains will be required in order to make significant advances in this context. Industrial decision makers must be provided with adequate methods and tools to simultaneously and systematically pursue technical, economic and environmental targets. Building on established and complementary methods, such as material and energy flow analysis (MEFA), value stream mapping (VSM), life cycle costing (LCC) and environmental life cycle assessment (LCA), this book introduces a concept that allows a holistic modeling and multi-dimensional performance assessment of manufacturing systems on different levels - from processes up to entire value chains and product life cycles. It also demonstrates the application of the concept using two case studies from the metal mechanic industry.
This book discusses the design of textile production within the framework Industry 4.0. Relevant research topics in the textile industry are identified and solutions are conceptualized, developed and implemented. This is followed by an evaluation of the solutions in which, among other things, the profitability is considered. Questions about the transfer of knowledge into the company complete the work. Industry 4.0 in Textile Production provides a rich investigation into and survey of textile production The informative cases studies, clear perspective, and detailed analysis make this book of great use to engineers, researchers and postgraduate students interested in the textile industry.
This book provides an overview on the latest advances in the synthesis, properties and applications of geopolymers reinforced with natural fibres such as pulp fibre, cotton, sisal, flax and hemp. The influence of adding various natural fibres and nanofillers on the mechanical properties of these composites is discussed. Potential challenges and future directions of these composites are highlighted and addressed. The content of this book caters to students, researchers and academics who are interested in the synthesis and applications of geopolymers composites.
The book covers specific and selective reagents for the determination of iron and copper by spectrophotometry. It provides methods for each group or class of reagents, including conditions, wavelength and interferences of other ions in samples. It is a unique guide for researchers in analytical chemistry from pharmaceutical to environmental monitoring laboratories working on iron and copper based products.
This volume presents papers from International Meeting on Energy Storage Devices (IMSED 2018). It covers the recent research in energy storage devices, specifically for Li-ion battery and supercapacitors, covering their synthesis, characterization of storage materials and associated phenomenon at electrode/electrolyte interfaces, as well as addressing the challenges associated with their disposal, cost, life cycle and usage. This volume will be of interest to researchers and engineers across a variety of fields.
Thermodynamic Tables to Accompany Modern Engineering Thermodynamics is a companion text to Modern Engineering Thermodynamics by Robert T. Balmer. It contains two Appendices-Appendix C features 40 thermodynamic tables, while Appendix D provides 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. This booklet is provided at no extra charge with new copies of Balmer's book. It may be purchased separately if needed.
Avionics often serves as the tip of the spear for research into user-interface and systems usability in aviation. However, this emphasis on flashy, technology-driven design can come with a cost: the sacrifice of practical utility, which, in the high-stakes environment of military aviation, can lead directly to catastrophe. Mission Adaptive Display Technologies and Operational Decision Making in Aviation explores the use of adaptive and assistive technologies in aviation to establish clear guidelines for the design and implementation of such technologies to better serve the needs of both military and civilian pilots. Benefiting from the authors' combined experience of more than 40 years in the aviation industry and over 25,000 flight-hours, this volume targets a wide audience of engineers and business professionals. This premier reference source covers topics of interest to aviators and engineers, including aerodynamic systems design, operational decision theory, user interface design, avionics, and concepts and cases in flight operations, mission performance, and pilot training.
The thesis focuses on the syntheses, structural characterizations and chemical bonding analyses for several ternary R-M-Ge (R = rare earth metal; M = another metal) intermetallics. The challenges in understanding the main interactions governing the chemistry of these compounds, which lead to our inability to predict their formation, structure and properties, are what provided the motivation for this study. In particular, the R2MGe6 (M = Li, Mg, Al, Cu, Zn, Pd, Ag), R4MGe10-x (M = Li, Mg), R2Pd3Ge5, Lu5Pd4Ge8, Lu3Pd4Ge4 and Yb2PdGe3 phases were synthesized and structurally characterized. Much effort was put into the stabilization of metastable phases, employing the innovative metal flux method, and into the accurate structure solution of twinned crystals. Cutting-edge position-space chemical bonding techniques were combined with new methodologies conceived to correctly describe the Ge-M, Ge-La and also La-M polar-covalent interactions for the La2MGe6 (M = Li, Mg, Al, Cu, Zn, Pd, Ag) series. The present results constitute a step forward in our comprehension of ternary germanide chemistry as well as providing a good playground for further investigations.
Solid chemisorption technology is an effective form of energy conversion for recovering low-grade thermal energy, but limited thermal conductivity and agglomeration phenomena greatly limit its performance. Over the past 20 years, researchers have explored the use of thermal conductive porous matrix to improve heat and mass transfer performance. Their efforts have yielded composite sorption technology, which is now extensively being used in refrigeration, heat pumps, energy storage, and de-NOx applications. This book reviews the latest technological advances regarding composite solid sorbents. Various development methods are introduced and compared, kinetic models are presented, and different cycles are analyzed. Given its scope, the book will benefit experts involved in developing novel materials and cycles for energy conversion, as well as engineers working to develop effective commercialized energy conversion systems based on solid sorption technology
Nuclear spins are highly coherent quantum objects that were featured in early ideas and demonstrations of quantum information processing. In silicon, the high-fidelity coherent control of a single phosphorus (31-P) nuclear spin I=1/2 has demonstrated record-breaking coherence times, entanglement, and weak measurements. In this thesis, we demonstrate the coherent quantum control of a single antimony (123-Sb) donor atom, whose higher nuclear spin I = 7/2 corresponds to eight nuclear spin states. However, rather than conventional nuclear magnetic resonance (NMR), we employ nuclear electric resonance (NER) to drive nuclear spin transitions using localized electric fields produced within a silicon nanoelectronic device. This method exploits an idea first proposed in 1961 but never realized experimentally with a single nucleus, nor in a non-polar crystal such as silicon. We then present a realistic proposal to construct a chaotic driven top from the nuclear spin of 123-Sb. Signatures of chaos are expected to arise for experimentally realizable parameters of the system, allowing the study of the relation between quantum decoherence and classical chaos, and the observation of dynamical tunneling. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors, hybrid spin-mechanical quantum systems, and quantum-computing elements using all-electrical controls.
This book covers supply chain and logistics, production and manufacturing systems as well as human factors. Topics such as applications to procurements from suppliers, suppliers developments and relationships with suppliers are reported. The techniques and tools applied to production processes, such as, machinery maintenance and quick changeover, are described in detail. The book also presents human factors as the main component in the industrial engineering field, reporting some successful teamwork organizations for improvements and applied ergonomics, among others.
Gene therapy as a potential method for treatment of genetic disorders and other malignancies as well as treatment of many cancers has attracted a great amount of attention in recent years. Current research focuses on stable and smart drug/gene delivery systems, including controlled release. Smart nanostructures have been considered as a promising approach when applied to drug and gene delivery systems, and could solve the problems related to the inefficient transfer of medication to the affected cells.
Nanocomposites are one of the major advances in the field of materials. They have applications in sectors as varied as aeronautics, energy and the environment. However, the effective use of nanocomposites requires new knowledge and tools in order to overcome the difficulties and benefit from the advantages. Nanocomposites presents recent academic and industrial progress in this field, as well as the latest research on the effective use of nanoscale fillers and reinforcements to improve the performance of advanced nanocomposites. It also describes the techniques and tools used to prepare nanocomposites, including the latest techniques for synthesis and surface treatment of nanofillers for different applications. Finally, it details the role of nanoscience in the design, characterization and multi-scale modeling of these materials, with a focus on nanoscale phenomena.
This book offers essential information on China's human spacecraft technologies, reviewing their evolution from theoretical and engineering perspectives. It discusses topics such as the design of manned spaceships, cargo spacecraft, space laboratories, space stations and manned lunar and Mars detection spacecraft. It also addresses various key technologies, e.g. for manned rendezvous, docking and reentry. The book is chiefly intended for researchers, graduate students and professionals in the fields of aerospace engineering, control, electronics & electrical engineering, and related areas.
This companion volume to "Fundamental Polymer Science" (Gedde and Hedenqvist, 2019) offers detailed insights from leading practitioners into experimental methods, simulation and modelling, mechanical and transport properties, processing, and sustainability issues. Separate chapters are devoted to thermal analysis, microscopy, spectroscopy, scattering methods, and chromatography. Special problems and pitfalls related to the study of polymers are addressed. Careful editing for consistency and cross-referencing among the chapters, high-quality graphics, worked-out examples, and numerous references to the specialist literature make "Applied Polymer Science" an essential reference for advanced students and practicing chemists, physicists, and engineers who want to solve problems with the use of polymeric materials.
The Applied Handbook of Adhesives provides a thoroughly practical survey of all aspects of adhesives technology from selection and surface preparation to industrial applications and health and environmental factors. The resulting handbook is a hard-working reference for a wide range of engineers and technicians working in the adhesives industry and a variety of industry sectors that make considerable use of adhesives. Particular attention is given to adhesives applications in the automotive, aerospace, medical, dental and electronics
sectors. A handbook that truly focuses on the applied aspects of adhesives selection and applications: this is a book that won't gather dust on the shelf ? Provides practical techniques for rendering materials surfaces adherable ? Sector-based studies explore the specific issues for automotive & aerospace, medical, dental and electronics
This book introduces the fabrication of superhydrophobic surfaces and some unique droplet behaviors during condensation and melting phase change on superhydrophobic surfaces, and discusses the relationship between droplet behavior and surface wettability. The contents in this book, which are all research hotspots currently, shall not only bring new insights into the physics of condensation and icing/frosting phenomena, but also provide theoretical support to solve the heat transfer deterioration, the ice/frost accretion and other related engineering problems. This book is for the majority of graduate students and researchers in related scientific areas.
|
![]() ![]() You may like...
Algebras, Lattices, Varieties - Volume…
Ralph S Freese, Ralph N. McKenzie, …
Paperback
R3,244
Discovery Miles 32 440
Computation and Big Data for Transport…
Pedro Diez, Pekka Neittaanmaki, …
Hardcover
R4,585
Discovery Miles 45 850
Electric Vehicles - Modern Technologies…
Nil Patel, Akash Kumar Bhoi, …
Hardcover
R5,118
Discovery Miles 51 180
Advanced Microsystems for Automotive…
Carolin Zachaus, Beate M'Uller, …
Hardcover
Theory and Applications of Ordered Fuzzy…
Piotr Prokopowicz, Jacek Czerniak, …
Hardcover
R1,618
Discovery Miles 16 180
Linear Algebra for Signal Processing
Adam Bojanczyk, George Cybenko
Hardcover
R4,463
Discovery Miles 44 630
|