![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials
Rolling Bearing Tribology: Tribology and Failure Modes of Rolling Element Bearings discusses these machine elements that are used to accommodate motion on or about shafts in mechanical systems, with ball bearings, cylindrical roller bearings, spherical roller bearings, and tapered roller bearings reviewed. Each bearing type experiences different kinds of motion and forces with their respective raceway, retainers and guiding flanges. The material in this book identifies the tribology of the major bearing types and how that tribology depends upon materials, surfaces and lubrication. In addition, the book describes the best practices to mitigate common failure modes of rolling element bearings.
Intelligent Nanotechnology: Merging Nanoscience and Artificial Intelligence provides an overview of advances in science and technology made possible by the convergence of nanotechnology and artificial intelligence (AI). Sections focus on AI-enhanced design, characterization and manufacturing and the use of AI to improve important material properties, with an emphasis on mechanical, photonic, electronic and magnetic properties. Designing benign nanomaterials through the prediction of their impact on biology and the environment is also discussed. Other sections cover the use of AI in the acquisition and analysis of data in experiments and AI technologies that have been enhanced through nanotechnology platforms. Final sections review advances in applications enabled by the merging of nanotechnology and artificial intelligence, including examples from biomedicine, chemistry and automated research.
Advances in Imaging and Electron Physics, Volume 224 highlights new advances in the field, with this new volume presenting interesting chapters on Measuring elastic deformation and orientation gradients by scanning electron microscopy - conventional, new and emerging methods, Development of an alternative global method with high angular resolution, Implementing the new global method, Numerical validation of the method and influence of optical distortions, and Applications of the method.
Metal Oxides and Related Solids for Electrocatalytic Water Splitting reviews the fundamentals and strategies needed to design and fabricate metal oxide-based electrocatalysts. After an introduction to the key properties of transition metal oxides, materials engineering methods to optimize the performance of metal-oxide based electrocatalysts are discussed. Strategies reviewed include defect engineering, interface engineering and doping engineering. Other sections cover important categories of metal-oxide (and related solids) based catalysts, including layered hydroxides, metal chalcogenides, metal phosphides, metal nitrides, metal borides, and more. Each chapter introduces important properties and material design strategies, including composite and morphology design. There is also an emphasis on cost-effective materials design and fabrication for optimized performance for electrocatalytic water splitting applications. Lastly, the book touches on recently developed in-situ characterization methods applied to observe and control the material synthesis process.
The Mechanics of Hydrogels: Mechanical Properties, Testing, and Applications offers readers a systematic description of the mechanical properties and characterizations of hydrogels. Practical topics such as manufacturing hydrogels with controlled mechanical properties and the mechanical testing of hydrogels are covered at length, as are areas such as inelastic and nonlinear deformation, rheological characterization, fracture and indentation testing, mechanical properties of cellularly responsive hydrogels, and more. Proper instrumentation and modeling techniques for measuring the mechanical properties of hydrogels are also explored.
Wool Fiber Reinforced Polymer Composites is an in-depth and practical exploration of wool-based composites, covering everything from the morphology of wool fiber to the industrial applications of wool composites. Wool has emerged in the top position for this role because of its unique characteristics. While fine wool is too costly for many such applications, coarse wool of greater than 35 microns fiber length is globally under-utilized. This pioneering book describes every form of wool composite, woven, nonwoven, felt and fiber, including different fabrication methods. In unique detail, the international team of expert contributors describe the morphology, structure and properties of wool, methods for the chemical modification of wool, different forms of wool-polymer composites, and many exciting emerging applications.
Polymeric Biomaterials for Healthcare Applications details a broad range of polymeric biomaterials, methods of synthesis and preparation, and their various applications in healthcare and biomedicine. The book provides a fundamental overview of polymers and processing technologies to allow clinical scientists to explore the use of these polymers in alternative applications. A wide variety of healthcare applications are covered, including treatment for autoimmune diseases and bacterial infections, tissue engineering, gene delivery, wound dressing, and more. The book provides a core introductory text for clinical and materials scientists new to the area of polymeric biomaterials. This book will prove useful to academics and researchers in materials science, biomedical engineering, clinical science and pharmaceutical science.
Alkali-activated materials, including geopolymers, are being studied at an increasing pace for various high-value applications. The main drivers for this emerging interest include the low-energy, low-cost, and readily up-scalable manufacturing process; the possibility to utilize industrial wastes and by-products as raw materials; and beneficial material properties comparable to conventional materials. It has already been verified that alkali-activated materials are very versatile in environmental technology applications for pollution control. The current research in the field focuses on advanced manufacturing methods, material properties, and applications, for example, additive manufacturing, modification of surface chemistry, CO2 capture, and green catalysis. Alkali-Activated Materials in Environmental Technology Applications discusses what novel possibilities alkali-activated materials provide in comparison to conventional materials (such as high-temperature ceramics, synthetic zeolites, or organic polymers). The specific environmental applications that are covered include water and wastewater treatment, air pollution control, stabilization/solidification of hazardous wastes, and catalysts in chemical processes. In addition, preparation methods, material properties, and the chemistry of alkali-activated materials are revisited from the viewpoint of environmental technology applications. This book also discusses how well alkali-activated materials fit under the concepts of green chemistry and circular economy and how the life cycle analysis of these materials compares to conventional materials.
Sustainable Fibres for Fashion and Textile Manufacturing presents the latest technical information about innovative natural and synthetic materials, helping the reader to understand sustainable fibres and raw materials for fashion and textile manufacturing. With a particular focus on apparel manufacturing, different applications of sustainable fibres are explored along with manufacturing techniques and details of the material properties. New research investigating nontraditional sources of textile fibres such as lotus, orange, milk, seaweed, corn, and mushroom are all presented, providing a uniquely comprehensive resource. Drawing on work by contributors from a variety of fields and roles in industry and academia, this book shares solutions and new perspectives on this interdisciplinary topic more widely in the hope of leading to research breakthroughs.
Optimizing the process of converting heat into mechanical power is a major challenge when it comes to meeting targets for protecting primary energy resources and minimizing our environmental impact. For many years to come, the use of thermal engines will continue to be necessary for transportation on land, by sea and by air, as well as for many industrial applications. Against this background, Thermodynamics of Heat Engines aims to present a comprehensive overview of the thermodynamic concepts, including combustion, that are necessary for understanding the phenomena governing the energy efficiency of internal and external combustion engines as well as that of gas turbines and jet propulsion engines. Existing and developing industrial applications, based on combined heat and power (CHP) or the use of staged cycles, are presented, with particular attention paid to the recovery of low temperature waste heat. This book, which is mainly intended for university and engineering students but is also useful for engineers and technicians working in the fields concerned, provides a basis for reflection on the optimization of energy systems.
Thermal Management of Gallium Nitride Electronics outlines the technical approaches undertaken by leaders in the community, the challenges they have faced, and the resulting advances in the field. This book serves as a one-stop reference for compound semiconductor device researchers tasked with solving this engineering challenge for future material systems based on ultra-wide bandgap semiconductors. A number of perspectives are included, such as the growth methods of nanocrystalline diamond, the materials integration of polycrystalline diamond through wafer bonding, and the new physics of thermal transport across heterogeneous interfaces. Over the past 10 years, the book's authors have performed pioneering experiments in the integration of nanocrystalline diamond capping layers into the fabrication process of compound semiconductor devices. Significant research efforts of integrating diamond and GaN have been reported by a number of groups since then, thus resulting in active thermal management options that do not necessarily lead to performance derating to avoid self-heating during radio frequency or power switching operation of these devices. Self-heating refers to the increased channel temperature caused by increased energy transfer from electrons to the lattice at high power. This book chronicles those breakthroughs.
Finite Element Method: Physics and Solution Methods aims to provide the reader a sound understanding of the physical systems and solution methods to enable effective use of the finite element method. This book focuses on one- and two-dimensional elasticity and heat transfer problems with detailed derivations of the governing equations. The connections between the classical variational techniques and the finite element method are carefully explained. Following the chapter addressing the classical variational methods, the finite element method is developed as a natural outcome of these methods where the governing partial differential equation is defined over a subsegment (element) of the solution domain. As well as being a guide to thorough and effective use of the finite element method, this book also functions as a reference on theory of elasticity, heat transfer, and mechanics of beams.
A comprehensive look combining experimental and theoretical approaches to graphene, nanotubes, and quantum dots-based nanotechnology evaluation and development are including a review of key applications. Graphene, nanotubes, and quantum dots-based nanotechnology review the fundamentals, processing methods, and applications of this key materials system. The topics addressed are comprehensive including synthesis, preparation, both physical and chemical properties, both accepted and novel processing methods, modeling, and simulation. The book provides fundamental information on key properties that impact performance, such as crystal structure and particle size, followed by different methods to analyze, measure, and evaluate graphene, nanotubes, and quantum dots-based nanotechnology and particles. Finally, important applications are covered, including different applications of biomedical, energy, electronics, etc. Graphene, nanotubes, and quantum dots-based nanotechnology is appropriate for those working in the disciplines of nanotechnology, materials science, chemistry, physics, biology, and medicine.
Reliability and Failure Analysis of High-Power LED Packaging provides fundamental understanding of the reliability and failure analysis of materials for high-power LED packaging, with the ultimate goal of enabling new packaging materials. This book describes the limitations of the present reliability standards in determining the lifetime of high-power LEDs due to the lack of deep understanding of the packaging materials and their interaction with each other. Many new failure mechanisms are investigated and presented with consideration of the different stresses imposed by varying environmental conditions. The detailed failure mechanisms are unique to this book and will provide insights for readers regarding the possible failure mechanisms in high-power LEDs. The authors also show the importance of simulation in understanding the hidden failure mechanisms in LEDs. Along with simulation, the use of various destructive and non-destructive tools such as C-SAM, SEM, FTIR, Optical Microscopy, etc. in investigation of the causes of LED failures are reviewed. The advancement of LEDs in the last two decades has opened vast new applications for LEDs which also has led to harsher stress conditions for high-power LEDs. Thus, existing standards and reliability tests need to be revised to meet the new demands for high-power LEDs.
Polymeric materials offer a high level of versatility due to the range of applications possible within the biomedical and clinical fields - including wound closure - particularly in comparison to metals or ceramics. These specialised materials also allow for a diverse array of therapeutic effects. Although there have been advances in improving polymeric materials for surgical sutures, there is little information available regarding improving the therapeutic value of sutures, and advanced technologies used to implement this improvement. Advanced Technologies and Polymer Materials for Surgical Sutures provides thorough coverage on suture materials with improved mechanical and therapeutic properties that can improve quality of life; chapter topics include drug-releasing kinetics of sutures, shape memory polymer sutures and future trends. This book is a useful resource for academics and researchers in the materials science and biomedical engineering fields, as well as professionals in biomaterials and biotextiles development and clinicians looking to learn more about suture material properties and suture/body interactions.
Epitaxial Growth of Complex Metal Oxides, Second Edition reviews techniques and recent developments in the fabrication quality of complex metal oxides, which are facilitating advances in electronic, magnetic and optical applications. Sections review the key techniques involved in the epitaxial growth of complex metal oxides and explore the effects of strain and stoichiometry on crystal structure and related properties in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films, including optoelectronics, batteries, spintronics and neuromorphic applications. This new edition has been fully updated, with brand new chapters on topics such as atomic layer deposition, interfaces, STEM-EELs, and the epitaxial growth of multiferroics, ferroelectrics and nanocomposites.
Natural fiber composites have experienced a renaissance over the last two decades as a response to societal demands for developing eco-friendly, biodegradable and recyclable materials. They are now being extensively used in everyday products as well as in automotive, packaging, sports and the construction industries. These fibers require surface treatments in order to improve their properties and interfacial bonding with polymer matrices, and to reduce their hydrophilic character. These methods can be grouped into three major categories: chemical, physical and biological. Chemical methods use chemical reagents to reduce fibers' hydrophilic tendency and thus improve compatibility with the matrix. They also expose more reactive groups on the fibre surface to facilitate efficient coupling with the matrix. Physical methods change structural and surface properties of the fiber and thereby influence the interfacial bonding with matrices, without extensively changing the chemical composition of the fibers. They are cleaner and simpler than the chemical methods. Biological methods use biological agents like fungi, enzymes and bacteria to modify the fiber surface properties. These methods are not toxic like chemical methods and are not energy-intensive like physical methods. Surface Treatment Methods of Natural Fibers and their Effects on Biocomposites presents an overview and recent developments of these methods. All the major methods are reviewed, explaining the science and methodology behind each method. The effects of these methods on various properties of fibers and the biocomposites made from these fibers are analyzed in detail. The book will be an essential reference for academic researchers, materials scientists and engineers, postgraduate students and industrial researchers and development scientists and engineers working on natural fibers and biocomposites.
Aggregation-Induced Emission (AIE): A Practical Guide introduces readers to the topic, guiding them through fundamental concepts and the latest advances in applications. The book covers concepts, principles and working mechanisms of AIE in AIE-active luminogens, with different classes of AIE luminogens reviewed, including polymers, three-dimensional frameworks (MOFs and COFs) and supramolecular gels. Special focus is given to the structure-property relationship, structural design strategies, targeted properties and application performance. The book provides readers with a deep understanding, not only on the fundamental principles of AIE, but more importantly, on how AIE luminogens and AIE properties can be incorporated in material development.
TSV 3D RF Integration: High Resistivity Si Interposer Technology systematically introduces the design, process development and application verification of high-resistivity silicon interpose technology, addressing issues of high frequency loss and high integration level. The book includes a detailed demonstration of the design and process development of Hr-Si interposer technology, gives case studies, and presents a systematic literature review. Users will find this to be a resource with detailed demonstrations of the design and process development of HR-Si interposer technologies, including quality monitoring and methods to extract S parameters. A series of cases are presented, including an example of an integrated inductor, a microstrip inter-digital filter, and a stacked patch antenna. Each chapter includes a systematic and comparative review of the research literature, offering researchers and engineers in microelectronics a uniquely useful handbook to help solve problems in 3D heterogenous RF integration oriented Hr-Si interposer technology.
This brand new volume in the ASM Handbook series has been developed to address the current and rapidly expanding importance of additive manufacturing (AM). ASM Handbook, Volume 24: Additive Manufacturing Processes provides the latest knowledge in materials, processes, and applications of AM, written by the leading experts in research and industry. It begins with an introduction and history of AM, authored by some of the key participants in that history as they trace the evolution of AM. The complete suite of materials and processes for polymers and ceramics are described in detail in the next two divisions. A division on metal AM processes begins with an in-depth description of the production and characterization of metal powders, which has a big effect on the success or failure of metal AM processes. The book describes AM processing of a wide variety of materials, illustrating differences in characteristics of metal alloys produced by AM processes in contrast to conventional processes. Volume 24 also covers direct-write processes, which take advantage of AM processes to combine materials and devices for multifunctional engineering applications.
Callister's Materials Science and Engineering: An Introduction, 10th Edition promotes student understanding of the three primary types of materials (metals, ceramics, and polymers) and composites, as well as the relationships that exist between the structural elements of materials and their properties.
Nanotechnology in the Automotive Industry explores how nanotechnology and nanomaterials are used to enhance the performance of materials and devices for automotive application by fabricating nano-alloys, nanocomposites, nano coatings, nanodevices, nanocatalysts and nanosensors. Consisting of 36 chapters in 6 parts, this new volume in the Micro and Nano Technologies series is for materials scientists, nanotechnologists and automotive engineers working with nanotechnology and nanomaterials for automotive applications. Nanotechnology is seen as one of the core technologies for the future automotive industry to sustain competitiveness. The benefits that nanotechnology brings to the automotive sector include stronger and lighter materials for increased safety and reduced fuel consumption, improved engine performance and fuel consumption for gasoline powered vehicles due to nanocatalysts, fuel additives and lubricants, and more.
Sustainability and Health in Intelligent Buildings presents a comprehensive roadmap for designing and constructing high-performance clean energy-efficient buildings, including intelligence capabilities underpinned by smart power, 5G and Internet-of-Things technologies, environmental sensors, intelligent control strategies and cyber-physical security. This book includes a special emphasis on health pandemic resiliency that discusses strong engineering control strategies to respond and recover from infectious diseases like COVID-19. Sections cover the foundational aspects of healthy buildings, with a special emphasis on assessing indoor environmental qualities. In addition, it introduces the necessary principles that assist engineers and researchers in understanding and designing buildings that meet health and sustainability goals. |
You may like...
Applied Information Science, Engineering…
Gabriella Bognar, Tibor Toth
Hardcover
R3,337
Discovery Miles 33 370
Fuzzy Sets-Based Methods and Techniques…
Ali Ebrahimnejad, Jose-Luis Verdegay
Hardcover
R2,703
Discovery Miles 27 030
Data Envelopment Analysis with R
Farhad Hosseinzadeh Lotfi, Ali Ebrahimnejad, …
Hardcover
R3,990
Discovery Miles 39 900
Computational Intelligence Applications…
Fahed Mostafa, Tharam Dillon, …
Hardcover
R3,922
Discovery Miles 39 220
Analytics, Operations, and Strategic…
Gerald William Evans, William E. Biles, …
Hardcover
R5,333
Discovery Miles 53 330
Intelligent Decision Making in Quality…
Cengiz Kahraman, Seda Yanik
Hardcover
|