0
Your cart

Your cart is empty

Books > Professional & Technical > Energy technology & engineering > Nuclear power & engineering

Buy Now

Nuclear Power Plant Design and Seismic Safety Considerations (Paperback) Loot Price: R349
Discovery Miles 3 490
Nuclear Power Plant Design and Seismic Safety Considerations (Paperback): Peter Folger, Anthony Amdrews

Nuclear Power Plant Design and Seismic Safety Considerations (Paperback)

Peter Folger, Anthony Amdrews

 (sign in to rate)
Loot Price R349 Discovery Miles 3 490

Bookmark and Share

Expected to ship within 10 - 15 working days

The earthquake and subsequent tsunami that devastated Japan's Fukushima Daiichi nuclear power station and the earthquake that forced the North Anna, VA, nuclear power plant's temporary shutdown have focused attention on the seismic criteria applied to siting and designing commercial nuclear power plants. Some Members of Congress have questioned whether U.S nuclear plants are more vulnerable to seismic threats than previously assessed, particularly given the Nuclear Regulatory Commission's (NRC's) ongoing reassessment of seismic risks at certain plant sites. The design and operation of commercial nuclear power plants operating in the United States vary considerably because most were custom-designed and custom-built. Boiling water reactors (BWRs) directly generate steam inside the reactor vessel. Pressurized water reactors (PWRs) use heat exchangers to convert the heat generated by the reactor core into steam outside of the reactor vessel. U.S. utilities currently operate 104 nuclear power reactors at 65 sites in 31 states; 69 are PWR designs and the 35 are BWR designs. One of the most severe operating conditions a reactor may face is a loss of coolant accident (LOCA), which can lead to a reactor core meltdown. The emergency core cooling system (ECCS) provides core cooling to minimize fuel damage by injecting large amounts of cool water containing boron (borated water slows the fission process) into the reactor coolant system following a pipe rupture or other water loss. The ECCS must be sized to provide adequate makeup water to compensate for a break of the largest diameter pipe in the primary system (i.e., the socalled "double-ended guillotine break" (DEGB)). The NRC considers the DEGB to be an extremely unlikely event; however, even unlikely events can occur, as the magnitude 9.0 earthquake and resulting tsunami that struck Fukushima Daiichi proves. U.S. nuclear power plants designed in the 1960s and 1970s used a deterministic statistical approach to addressing the risk of damage from shaking caused by a large earthquake (termed Deterministic Seismic Hazard Analysis, or DSHA). Since then, engineers have adopted a more comprehensive approach to design known as Probabilistic Seismic Hazard Analysis (PSHA). PSHA estimates the likelihood that various levels of ground motion will be exceeded at a given location in a given future time period. New nuclear plant designs will apply PSHA. In 2008, the U.S Geological Survey (USGS) updated the National Seismic Hazard Maps (NSHM) that were last revised in 2002. USGS notes that the 2008 hazard maps differ significantly from the 2002 maps in many parts of the United States, and generally show 10%-15% reductions in spectral and peak ground acceleration across much of the Central and Eastern United States (CEUS), and about 10% reductions for spectral and peak horizontal ground acceleration in the Western United States (WUS). Spectral acceleration refers to ground motion over a range, or spectra, of frequencies. Seismic hazards are greatest in the WUS, particularly in California, Oregon, and Washington, as well as Alaska and Hawaii. In 2010, the NRC examined the implications of the updated NSHM for nuclear power plants operating in the CEUS, and concluded that NSHM data suggest that the probability for earthquake ground motions may be above the seismic design basis for some nuclear plants in the CEUS. In late March 2011, NRC announced that it had identified 27 nuclear reactors operating in the CEUS that would receive priority earthquake safety reviews.

General

Imprint: Createspace Independent Publishing Platform
Country of origin: United States
Release date: June 2012
First published: June 2012
Authors: Peter Folger • Anthony Amdrews
Dimensions: 280 x 216 x 2mm (L x W x T)
Format: Paperback - Trade
Pages: 44
ISBN-13: 978-1-4781-1095-8
Categories: Books > Professional & Technical > Energy technology & engineering > Nuclear power & engineering
Promotions
LSN: 1-4781-1095-3
Barcode: 9781478110958

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

You might also like..

Encyclopedia of Nuclear Energy
Ehud Greenspan Hardcover R70,498 Discovery Miles 704 980
The 2011 Fukushima Nuclear Power Plant…
Yotaro Hatamura, Seiji Abe, … Paperback R3,987 R3,715 Discovery Miles 37 150
Scientific Basis for Nuclear Waste…
Neil Hyatt, Kevin M. Fox, … Hardcover R2,115 Discovery Miles 21 150
Radioactive Waste Management and…
W. E Lee, Michael I. Ojovan, … Hardcover R7,134 Discovery Miles 71 340
Materials Ageing and Degradation in…
K.L. Murty Hardcover R4,670 Discovery Miles 46 700
Probabilistic Safety Assessment for…
Gennadij V. Arkadov, Alexander F. Getman, … Hardcover R4,581 Discovery Miles 45 810
Nuclear Decommissioning - Planning…
Michele Laraia Hardcover R6,601 Discovery Miles 66 010
Infrastructure and Methodologies for the…
Agustin Alonso Hardcover R7,799 Discovery Miles 77 990
Deep Geological Disposal of Radioactive…
W. R. Alexander, Linda McKinley Hardcover R3,666 Discovery Miles 36 660
Low-Energy Nuclear Reactions and New…
Jan Marwan, Steven Krivit Hardcover R6,201 Discovery Miles 62 010
Reliability and Probabilistic Safety…
Senthil C. Kumar Paperback R3,801 Discovery Miles 38 010
Boiling Water Reactors
Yasuo Koizumi, Koji Nishida, … Paperback R4,180 Discovery Miles 41 800

See more

Partners