Asisknown,theLagrangeandHamiltongeometrieshaveappearedrelatively
recently [76, 86]. Since 1980thesegeometrieshave
beenintensivelystudied
bymathematiciansandphysicistsfromRomania,Canada,Germany,Japan,
Russia, Hungary,e.S.A. etc.
PrestigiousscientificmeetingsdevotedtoLagrangeandHamiltongeome-
tries and their applications have been organized in the above
mentioned countries and a number ofbooks and monographs have been
published by specialists in the field: R. Miron [94, 95], R.
Mironand M. Anastasiei [99, 100], R. Miron, D. Hrimiuc, H.
Shimadaand S.Sabau [115], P.L. Antonelli, R. Ingardenand
M.Matsumoto [7]. Finslerspaces,whichformasubclassof
theclassofLagrangespaces, havebeenthesubjectofsomeexcellentbooks,
forexampleby:Yl.Matsumoto[76], M.AbateandG.Patrizio[1],D.Bao,S.S.
Chernand Z.Shen [17]andA.BejancuandH.R.Farran [20]. Also, wewould
liketopointoutthemonographsofM. Crampin [34], O.Krupkova [72] and
D.Opri~,I.Butulescu [125],D.Saunders
[144],whichcontainpertinentappli-
cationsinanalyticalmechanicsandinthetheoryofpartialdifferentialequa-
tions. Applicationsinmechanics,
cosmology,theoreticalphysicsandbiology can be found in the well
known books ofP.L. Antonelliand T.Zawstaniak [11], G. S. Asanov
[14]' S. Ikeda [59], :VI. de LeoneandP.Rodrigues [73].
TheimportanceofLagrangeandHamiltongeometriesconsistsofthefact that
variational problems for important Lagrangiansor Hamiltonians have
numerous applicationsinvariousfields, such asmathematics,
thetheoryof dynamicalsystems, optimalcontrol, biology,andeconomy.
Inthisrespect, P.L. Antonelli'sremark isinteresting:
"ThereisnowstrongevidencethatthesymplecticgeometryofHamilto-
niandynamicalsystemsisdeeplyconnectedtoCartangeometry,thedualof
Finslergeometry", (seeV.I.Arnold,I.M.GelfandandV.S.Retach [13]).
The above mentioned applications have also imposed the introduction
x RaduMiron ofthe notionsofhigherorder Lagrangespacesand, ofcourse,
higherorder Hamilton spaces. The base manifolds ofthese spaces are
bundles ofaccel- erations ofsuperior order. The methods used in the
construction ofthese geometries are the natural extensions ofthe
classical methods used in the edification ofLagrange and Hamilton
geometries. These methods allow us to solvean old
problemofdifferentialgeometryformulated by Bianchiand Bompiani
[94]morethan 100yearsago,namelytheproblemofprolongation
ofaRiemannianstructure gdefinedonthebasemanifoldM,tothetangent k
bundleT M, k> 1. Bymeansofthissolutionofthe previousproblem, we
canconstruct, for thefirst time,goodexamplesofregularLagrangiansand
Hamiltoniansofhigherorder.
General
Is the information for this product incomplete, wrong or inappropriate?
Let us know about it.
Does this product have an incorrect or missing image?
Send us a new image.
Is this product missing categories?
Add more categories.
Review This Product
No reviews yet - be the first to create one!