Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
This book includes an international group of researchers who present the latest achievements in the field of enzyme, immune system, and microbial and nano-biosensors. It highlights the experimental evidence for formation of biological fuel cells (BFCs)-which has a dual purpose - as a device that produces electricity and the systems which produce it simultaneously cleaning up the environment from polluting organic compounds. Considering the work in the field of macro, micro and nano-biosensors, considerable attention is paid to the use of nanomaterials for the modification of working electrodes. Nanomaterials in some cases can significantly improve the parameters of analytical systems. Readers will be interested in the projection of the presented theoretical and experimental materials in the field of practical application of modern analytical developments. The presented results in many cases imply the possibility of using the created models of macro, micro and nano-biosensors, and biofuel elements in the field of health, and protection/restoration of the environment. It includes information about all existing types of transducers of signals in biosensors - electrochemical, optical and quantum-optics, thermoelectric, data of atomic force microscopy, piezoelectric, and more. On the basis of these principles, descriptions are given about the functioning of macro, micro and nano- biosensors for the detection of compounds used in medicine, detection of compounds that clog the environment, and thus affect human health, for compounds that are potentially the basis for the production of drugs, for the selection of compounds that have medicinal activity, for immunodetection, and to assess the quality of food. These questions form the basis of research carried out in the field of biosensors in the world. Since the described models of biosensors have high sensitivity, high measurement speed and selectivity, the described results attract the attention of both the ordinary reader and business class specialists who create and implement analytical technologies. This book is very useful for researchers in life sciences, chemical sciences, physics, and engineering. In addition, it will be useful for the persons working in industry. Advanced technologies specialists will be attracted by the novelty of the proposed solutions and their relevance and ease of implementation. Since the studies contain sections describing the parameters of different biosensors, BFCs, they are easily navigated into assessing the effectiveness of the practical use of the proposed device. The relevant sections indicate such characteristics as detection ranges, life span, type of biological material used, the method of formation of the bio-receptor part. These parameters are of interest to both developers of new models of biosensors and BFC, and their manufacturers.
Focused more specifically on the recent advances in applications of various metals and their complexes used in biomedicine, particularly in the diagnosis and treatment of chronic diseases. The editors give equal importance to other key aspects such as toxicological issues and safety concerns. The application of metals in the biomedical field is highly interdisciplinary and has a broad appeal across all biomedical specialties. Biomedical Applications of Metals is particularly focused on covering the role of metals in medicine and the development of novel therapeutic products and solutions in the form of alternative medicines, and some topics on Indian traditional medicine i.e., "Ayurveda". In Section I, the book discusses the role of metals in medicines and include chapters on nanoparticles, noble metals, medical devices, copper. selenium, silver, and microbial pathogens; while Section II includes topics on metals toxicity including heavy metals, carcinogens, cancer therapy, Bhasma's and chelating agents used in Ayurveda, and biochemical and molecular targets including actions of metals. These new and emerging concepts of applications of metals in medicine, their crucial role in management of microbial resistance, and their use in the treatment of various chronic diseases is essential information for toxicologists, and clinical and biomedical researchers.
Pythium is one of the most important phytopathogens causing significant damage to agriculture, forest, and nurseries, etc. It is an unseen enemy of the root zone of various plants and hence considered as "hidden terror" for a number of plants. An accurate diagnosis and identification of Pythium causing various infections in plants is very important because it is often confused with several other fungi. Pythium infections are difficult to control once they have set in. Therefore, its effective and ecofriendly management is of paramount importance. In addition, there are many reports on Pythium causing infections in human beings and animals. The present book on Pythium focuses on various aspects which mainly include pathogenesis, technological developments in detection and diagnosis, and its management. Key Features Includes identification of Pythium spp. by traditional and molecular methods Deals with different diseases caused by Pythium spp Describes the role of Pythium in mammalian diseases Incorporates various management strategies Discusses emerging role of nanotechnological tools for the management of Pythium diseases
This book includes an international group of researchers who present the latest achievements in the field of enzyme, immune system, and microbial and nano-biosensors. It highlights the experimental evidence for formation of biological fuel cells (BFCs)-which has a dual purpose - as a device that produces electricity and the systems which produce it simultaneously cleaning up the environment from polluting organic compounds. Considering the work in the field of macro, micro and nano-biosensors, considerable attention is paid to the use of nanomaterials for the modification of working electrodes. Nanomaterials in some cases can significantly improve the parameters of analytical systems. Readers will be interested in the projection of the presented theoretical and experimental materials in the field of practical application of modern analytical developments. The presented results in many cases imply the possibility of using the created models of macro, micro and nano-biosensors, and biofuel elements in the field of health, and protection/restoration of the environment. It includes information about all existing types of transducers of signals in biosensors - electrochemical, optical and quantum-optics, thermoelectric, data of atomic force microscopy, piezoelectric, and more. On the basis of these principles, descriptions are given about the functioning of macro, micro and nano- biosensors for the detection of compounds used in medicine, detection of compounds that clog the environment, and thus affect human health, for compounds that are potentially the basis for the production of drugs, for the selection of compounds that have medicinal activity, for immunodetection, and to assess the quality of food. These questions form the basis of research carried out in the field of biosensors in the world. Since the described models of biosensors have high sensitivity, high measurement speed and selectivity, the described results attract the attention of both the ordinary reader and business class specialists who create and implement analytical technologies. This book is very useful for researchers in life sciences, chemical sciences, physics, and engineering. In addition, it will be useful for the persons working in industry. Advanced technologies specialists will be attracted by the novelty of the proposed solutions and their relevance and ease of implementation. Since the studies contain sections describing the parameters of different biosensors, BFCs, they are easily navigated into assessing the effectiveness of the practical use of the proposed device. The relevant sections indicate such characteristics as detection ranges, life span, type of biological material used, the method of formation of the bio-receptor part. These parameters are of interest to both developers of new models of biosensors and BFC, and their manufacturers.
Sustainable Bioenergy: Advances and Impacts presents a careful overview of advances and promising innovation in the development of various bioenergy technologies. It covers the production of bio-jet fuel, algal biofuels, recent developments in bioprocesses, nanotechnology applications for energy conversion, the role of different catalysts in the production of biofuels, and the impacts of those fuels on society. The book brings together global experts to form a big picture of cutting-edge research in sustainable bioenergy and biofuels. It is an ideal resource for researchers, students, energy analysts and policymakers who will benefit from the book's overview of impacts and innovative needs.
Focused more specifically on the recent advances in applications of various metals and their complexes used in biomedicine, particularly in the diagnosis and treatment of chronic diseases. The editors give equal importance to other key aspects such as toxicological issues and safety concerns. The application of metals in the biomedical field is highly interdisciplinary and has a broad appeal across all biomedical specialties. Biomedical Applications of Metals is particularly focused on covering the role of metals in medicine and the development of novel therapeutic products and solutions in the form of alternative medicines, and some topics on Indian traditional medicine i.e., "Ayurveda". In Section I, the book discusses the role of metals in medicines and include chapters on nanoparticles, noble metals, medical devices, copper. selenium, silver, and microbial pathogens; while Section II includes topics on metals toxicity including heavy metals, carcinogens, cancer therapy, Bhasma's and chelating agents used in Ayurveda, and biochemical and molecular targets including actions of metals. These new and emerging concepts of applications of metals in medicine, their crucial role in management of microbial resistance, and their use in the treatment of various chronic diseases is essential information for toxicologists, and clinical and biomedical researchers.
Nanotechnology in Agriculture and Agroecosystems presents the latest research on the role of nanotechnology in agriculture and agroecosystems, offering innovations and many potential benefits in terms of plant growth, food production, crop protection and ecosystem management. Sections introduce new perspectives on the use of nanotechnology in agroecosystems and sustainable agriculture. Subsequent chapters focus on specific areas of innovation, covering a wide range of applications, including plant disease and protection, food processing and packaging, soil quality, precision farming, and groundwater treatment. This is a valuable resource for researchers and advanced students across a range of disciplines, but it is also ideal for industrial scientists, engineers and R&D professionals with an interest in nanotechnology and sustainable technologies for agriculture and agro-industries.
Nanotechnology for Biorefinery takes an in-depth look at the emerging role of biotechnology and nanotechnology in biorefinery, considered to be one of the most important fields of research in the greener production of high-value products. With chapters covering the different types of nanomaterials, their properties and synthesis methods, the role of nanotechnology in biorefinery, recent advances and challenges, nanobiocatalysts and the applications of nanotechnology in biorefinery, this book will be of interest to students and researchers alike. It will assist users in their quest to develop cost-effective and environmentally-friendly production methods for various biorefining products.
Pythium is one of the most important phytopathogens causing significant damage to agriculture, forest, and nurseries, etc. It is an unseen enemy of the root zone of various plants and hence considered as "hidden terror" for a number of plants. An accurate diagnosis and identification of Pythium causing various infections in plants is very important because it is often confused with several other fungi. Pythium infections are difficult to control once they have set in. Therefore, its effective and ecofriendly management is of paramount importance. In addition, there are many reports on Pythium causing infections in human beings and animals. The present book on Pythium focuses on various aspects which mainly include pathogenesis, technological developments in detection and diagnosis, and its management. Key Features Includes identification of Pythium spp. by traditional and molecular methods Deals with different diseases caused by Pythium spp Describes the role of Pythium in mammalian diseases Incorporates various management strategies Discusses emerging role of nanotechnological tools for the management of Pythium diseases
|
You may like...
|