![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
The study and application of electronic materials has created an increasing demand for sophisticated and reliable techniques for examining and characterizing these materials. This comprehensive book looks at the area of x-ray diffraction and the modern techniques available for deployment in research, development, and production. It provides the theoretical and practical background for applying these techniques in scientific and industrial materials characterization. The main aim of the book is to map the theoretical and practical background necessary to the study of single crystal materials by means of high-resolution x-ray diffraction and topography. It combines mathematical formalisms with graphical explanations and hands-on practical advice for interpreting data.
This volume collects the proceedings of the 23rd International Course of Crystallography, entitled "X-ray and Neutron Dynamical Diffraction, Theory and Applications," which took place in the fascinating setting of Erice in Sicily, Italy. It was run as a NATO Advanced Studies Institute with A. Authier (France) and S. Lagomarsino (Italy) as codirectors, and L. Riva di Sanseverino and P. Spadon (Italy) as local organizers, R. Colella (USA) and B. K. Tanner (UK) being the two other members of the organizing committee. It was attended by about one hundred participants from twenty four different countries. Two basic theories may be used to describe the diffraction of radiation by crystalline matter. The first one, the so-called geometrical, or kinematical theory, is approximate and is applicable to small, highly imperfect crystals. It is used for the determination of crystal structures and describes the diffraction of powders and polycrystalline materials. The other one, the so-called dynamical theory, is applicable to perfect or nearly perfect crystals. For that reason, dynamical diffraction of X-rays and neutrons constitutes the theoretical basis of a great variety of applications such as: * the techniques used for the characterization of nearly perfect high technology materials, semiconductors, piezoelectric, electrooptic, ferroelectric, magnetic crystals, * the X-ray optical devices used in all modem applications of Synchrotron Radiation (EXAFS, High Resolution X-ray Diffractometry, magnetic and nuclear resonant scattering, topography, etc. ), and * X-ray and neutron interferometry.
This book aims to introduce the reader to the behaviour of electrons in solids, starting with the simplest possible model, and introducing higher-level models only when the simple model is inadequate. Unlike other solid state physics texts, this book does not begin with complex crystallography, but instead builds up from the simplest possible model of a free electron in a box. The approach is to introduce the subject through its historical development, and to show how quantum mechanics is necessary for an understanding of the properties of electrons in solids. It does not treat the dynamics of the crystal lattice, but proceeds to examine the consequences of collective behaviour in the phenomena of magnetism and superconductivity. Throughout the mathematics is straightforward and uses standard notation. This text is suitable for a second or third year undergraduate course in physics, and would also be suitable for an introductory solid state course in materials science or materials chemistry.
This book aims to introduce the reader to the behaviour of electrons in solids, starting with the simplest possible model, and introducing higher-level models only when the simple model is inadequate. Unlike other solid state physics texts, this book does not begin with complex crystallography, but instead builds up from the simplest possible model of a free electron in a box. The approach is to introduce the subject through its historical development, and to show how quantum mechanics is necessary for an understanding of the properties of electrons in solids. It does not treat the dynamics of the crystal lattice, but proceeds to examine the consequences of collective behaviour in the phenomena of magnetism and superconductivity. Throughout the mathematics is straightforward and uses standard notation. This text is suitable for a second or third year undergraduate course in physics, and would also be suitable for an introductory solid state course in materials science or materials chemistry.
|
![]() ![]() You may like...
Bald Knobbers: - Chronicles of Vigilante…
Vincent S. Anderson
Paperback
|