![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This Sixth Edition of Calculus continues the effort to promote courses in which understanding and computation reinforce each other. Calculus: Multivariable 6th Edition reflects the many voices of users at research universities, four-year colleges, community colleges, and secondary schools. This new edition has been streamlined to create a flexible approach to both theory and modeling. For instructors wishing to emphasize the connection between calculus and other fields, the text includes a variety of problems and examples from the physical, health, and biological sciences, engineering and economics. In addition, new problems on the mathematics of sustainability and new case studies on calculus in medicine by David E. Sloane, MD have been added.
Growing out of a course designed to teach Gauss's Disquisitiones Arithmeticae to honors-level undergraduates, Flath's Introduction to Number Theory focuses on Gauss's theory of binary quadratic forms. It is suitable for use as a textbook in a course or self-study by advanced undergraduates or graduate students who possess a basic familiarity with abstract algebra. The text treats a variety of topics from elementary number theory including the distribution of primes, sums of squares, continued factions, the Legendre, Jacobi and Kronecker symbols, the class group and genera. But the focus is on quadratic reciprocity (several proofs are given including one that highlights the $p - q$ symmetry) and binary quadratic forms. The reader will come away with a good understanding of what Gauss intended in the Disquisitiones and Dirichlet in his Vorlesungen. The text also includes a lovely appendix by J. P. Serre titled $\Delta = b^2 - 4ac$. The clarity of the author's vision is matched by the clarity of his exposition. This is a book that reveals the discovery of the quadratic core of algebraic number theory. It should be on the desk of every instructor of introductory number theory as a source of inspiration, motivation, examples, and historical insight.
Addressing physicists and mathematicians alike, this book discusses the finite dimensional representation theory of "sl(2), " both classical and quantum. Covering representations of "U(sl(2)), " quantum "sl(2), " the quantum trace and color representations, and the Turaev-Viro invariant, this work is useful to graduate students and professionals. The classic subject of representations of "U(sl(2))" is equivalent to the physicists' theory of quantum angular momentum. This material is developed in an elementary way using spin-networks and the Temperley-Lieb algebra to organize computations that have posed difficulties in earlier treatments of the subject. The emphasis is on the 6"j"-symbols and the identities among them, especially the Biedenharn-Elliott and orthogonality identities. The chapter on the quantum group "Ub-3.0 qb0(sl(2))" develops the representation theory in strict analogy with the classical case, wherein the authors interpret the Kauffman bracket and the associated quantum spin-networks algebraically. The authors then explore instances where the quantum parameter "q" is a root of unity, which calls for a representation theory of a decidedly different flavor. The theory in this case is developed, modulo the trace zero representations, in order to arrive at a finite theory suitable for topological applications. The Turaev-Viro invariant for 3-manifolds is defined combinatorially using the theory developed in the preceding chapters. Since the background from the classical, quantum, and quantum root of unity cases has been explained thoroughly, the definition of this invariant is completely contained and justified within the text.
|
![]() ![]() You may like...
Protecting Privacy through Homomorphic…
Kristin Lauter, Wei Dai, …
Hardcover
R3,121
Discovery Miles 31 210
Advances in Non-Archimedean Analysis and…
W. A. Zuniga-Galindo, Bourama Toni
Hardcover
R3,407
Discovery Miles 34 070
|