![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
Oncogenic transcription factors are an increasingly important target for anticancer therapies. Inhibiting these transcription factors could allow tumour cells to be "reprogrammed", leading to apoptosis or differentiation from the malignant phenotype. As the use of kinase inhibitors is gradually declining, transcription factor inhibition is the next hot topic for oncology research and merits much attention. This book highlights recent progress in the development of small-molecule inhibitors of oncogenic transcription factors. It also presents the evidence that this important protein class can be modulated in a number of ways to develop novel classes of therapeutic agents. The broad range of aspects covered by the book is noteworthy and renders it enormously valuable. This title serves as a unique reference book for postgraduates, academic researchers and practitioners working in the fields of biochemistry, biotechnology, cell and molecular biology and bio-inorganic chemistry.
While drug therapies developed in the last 80 years have markedly improved treatment outcomes and the management of some types of cancers, the lack of effectiveness and side effects associated with the most common treatment types remain unacceptable. However, recent technological advances are leading to improved therapies based on targeting distinct biological pathways in cancer cells. Chemistry and Pharmacology of Anticancer Drugs is a comprehensive survey of all families of anticancer agents and therapeutic approaches currently in use or in advanced stages of clinical trials, including biological-based therapies. The book is unique in providing molecular structures for all anticancer agents, discussing them in terms of history of development, chemistry, mechanism of action, structure-function relationships, and pharmacology. It also provides relevant information on side effects, dosing, and formulation. The authors, renowned scientists in cancer research and drug discovery, also provide up-to-date information on the drug discovery process, including discussions of new research tools, tumor-targeting strategies, and fundamental concepts in the relatively new areas of precision medicine and chemoprevention. Chemistry and Pharmacology of Anticancer Drugs is an indispensable resource for cancer researchers, medicinal chemists and other biomedical scientists involved in the development of new anticancer therapies. Its breadth of coverage, clear explanations, and illustrations also make it suitable for undergraduate and postgraduate courses in medicine, pharmacy, nursing, dentistry, nutrition, the biomedical sciences, and related disciplines.Key Features: Summarizes the fundamental causes of cancer, modes of treatment, and strategies for cancer drug discovery Brings together a broad spectrum of information relating to the chemistry and pharmacology of all families of anticancer agents and therapies Includes up-to-date information on cutting-edge aspects of cancer treatments such as biomarkers, pharmacogenetics, and pharmacogenomics Features new chapters on the "Evolution of Anticancer Therapies", "Antibody-Based Therapies", and "Cancer Chemoprevention"
While drug therapies developed in the last 80 years have markedly improved treatment outcomes and the management of some types of cancers, the lack of effectiveness and side effects associated with the most common treatment types remain unacceptable. However, recent technological advances are leading to improved therapies based on targeting distinct biological pathways in cancer cells. Chemistry and Pharmacology of Anticancer Drugs is a comprehensive survey of all families of anticancer agents and therapeutic approaches currently in use or in advanced stages of clinical trials, including biological-based therapies. The book is unique in providing molecular structures for all anticancer agents, discussing them in terms of history of development, chemistry, mechanism of action, structure-function relationships, and pharmacology. It also provides relevant information on side effects, dosing, and formulation. The authors, renowned scientists in cancer research and drug discovery, also provide up-to-date information on the drug discovery process, including discussions of new research tools, tumor-targeting strategies, and fundamental concepts in the relatively new areas of precision medicine and chemoprevention. Chemistry and Pharmacology of Anticancer Drugs is an indispensable resource for cancer researchers, medicinal chemists and other biomedical scientists involved in the development of new anticancer therapies. Its breadth of coverage, clear explanations, and illustrations also make it suitable for undergraduate and postgraduate courses in medicine, pharmacy, nursing, dentistry, nutrition, the biomedical sciences, and related disciplines.Key Features: Summarizes the fundamental causes of cancer, modes of treatment, and strategies for cancer drug discovery Brings together a broad spectrum of information relating to the chemistry and pharmacology of all families of anticancer agents and therapies Includes up-to-date information on cutting-edge aspects of cancer treatments such as biomarkers, pharmacogenetics, and pharmacogenomics Features new chapters on the "Evolution of Anticancer Therapies", "Antibody-Based Therapies", and "Cancer Chemoprevention"
Antibody-drug conjugates (ADCs) represent one of the most promising and exciting areas of anticancer drug discovery. Five ADCs are now approved in the US and EU [i.e., ado-trastuzumab emtansine (Kadcyla (TM)), brentuximab vedotin (Adcetris (TM)), inotuzumab ozogamicin (Besponsa (TM)), gemtuzumab ozogamicin (Mylotarg (TM)) and moxetumomab pasudotox-tdfk (Lumoxiti (R))] and over 70 others are in various stages of clinical development, with impressive interim results being reported for many. The technology is based on the concept of delivering a cytotoxic payload selectively to cancer cells by attaching it to an antibody targeted to antigens on the cell surfaces. This approach has several advantages including the ability to select patients as likely responders based on the presence of antigen on the surface of their cancer cells and a wider therapeutic index, given that ADC targeting enables a more efficient delivery of cytotoxic agents to cancer cells than can be achieved by conventional chemotherapy, thus minimising systemic toxicity. Although there are many examples of antibodies that have been developed for this purpose, along with numerous linker technologies used to attach the cytotoxic agent to the antibody, there is presently a relatively small number of payload molecules in clinical use. The purpose of this book is to describe the variety of payloads used to date, along with a discussion of their advantages and disadvantages and to provide information on novel payloads at the research stage that may be used clinically in the future.
|
![]() ![]() You may like...
The Death Of Democracy - Hitler's Rise…
Benjamin Carter Hett
Paperback
![]()
|