Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This volume is a collection of essays on complex symmetries. It is curated, emphasizing the analysis of the symmetries, not the various phenomena that display those symmetries themselves. With this, the volume provides insight to nonspecialist readers into how individual simple symmetries constitute complex symmetry. The authors and the topics cover many different disciplines in various sciences and arts. Simple symmetries, such as reflection, rotation, translation, similitude, and a few other simple manifestations of the phenomenon, are all around, and we are aware of them in our everyday lives. However, there are myriads of complex symmetries (composed of a bulk of simple symmetries) as well. For example, the well-known helix represents the combination of translational and rotational symmetry. Nature produces a great variety of such complex symmetries. So do the arts. The contributions in this volume analyse selected examples (not limited to geometric symmetries). These include physical symmetries, functional (meaning not morphological) symmetries, such as symmetries in the construction of the genetic code, symmetries in human perception (e.g., in geometry education as well as in constructing physical theories), symmetries in fractal structures and structural morphology, including quasicrystal and fullerene structures in stable bindings and their applications in crystallography and architectural design, as well as color symmetries in the arts. The volume is rounded of with beautiful illustrations and presents a fascinating panorama of this interdisciplinary topic.
Mathematics is often considered as a body of knowledge that is essen tially independent of linguistic formulations, in the sense that, once the content of this knowledge has been grasped, there remains only the problem of professional ability, that of clearly formulating and correctly proving it. However, the question is not so simple, and P. Weingartner's paper (Language and Coding-Dependency of Results in Logic and Mathe matics) deals with some results in logic and mathematics which reveal that certain notions are in general not invariant with respect to different choices of language and of coding processes. Five example are given: 1) The validity of axioms and rules of classical propositional logic depend on the interpretation of sentential variables; 2) The language dependency of verisimilitude; 3) The proof of the weak and strong anti inductivist theorems in Popper's theory of inductive support is not invariant with respect to limitative criteria put on classical logic; 4) The language-dependency of the concept of provability; 5) The language dependency of the existence of ungrounded and paradoxical sentences (in the sense of Kripke). The requirements of logical rigour and consistency are not the only criteria for the acceptance and appreciation of mathematical proposi tions and theories."
The book describes how field-charges, split into isotopic pairs, can commute and identifies the group of transformations that governs this exchange between their states. Invariance under this group is defined as Hypersymmetry. The book develops the physical consequences of Hypersymmetry such as conserved property, quanta and mediating bosons of the interaction field. Since all this expands beyond the standard model, the work determines the energy limits of the applicability of Hypersymmetry and discusses, how to remove the unwanted mass of the predicted set of bosons. Finally, it presents how the model can be applied in the four fundamental interactions. * Comprehensive work covering recent research. * Detailed calculations for a step by step understanding. * Useful reading for master students and researchers in theoretical and experimental physics. * A practical textbook for courses on the physics of the isotopic field-charges, their conservation and interactions.
Mathematics is often considered as a body of knowledge that is essen tially independent of linguistic formulations, in the sense that, once the content of this knowledge has been grasped, there remains only the problem of professional ability, that of clearly formulating and correctly proving it. However, the question is not so simple, and P. Weingartner's paper (Language and Coding-Dependency of Results in Logic and Mathe matics) deals with some results in logic and mathematics which reveal that certain notions are in general not invariant with respect to different choices of language and of coding processes. Five example are given: 1) The validity of axioms and rules of classical propositional logic depend on the interpretation of sentential variables; 2) The language dependency of verisimilitude; 3) The proof of the weak and strong anti inductivist theorems in Popper's theory of inductive support is not invariant with respect to limitative criteria put on classical logic; 4) The language-dependency of the concept of provability; 5) The language dependency of the existence of ungrounded and paradoxical sentences (in the sense of Kripke). The requirements of logical rigour and consistency are not the only criteria for the acceptance and appreciation of mathematical proposi tions and theories.
The first comprehensive book on the topic in half a century explores recent symmetry - and symmetry breaking - related discoveries, and discusses the questions and answers they raise in diverse disciplines: particle and high-energy physics, structural chemistry and the biochemistry of proteins, in genetic code study, in brain research, and also in architectural structures, and business decision making, to mention only a few examples.
This volume is a collection of essays on complex symmetries. It is curated, emphasizing the analysis of the symmetries, not the various phenomena that display those symmetries themselves. With this, the volume provides insight to nonspecialist readers into how individual simple symmetries constitute complex symmetry. The authors and the topics cover many different disciplines in various sciences and arts. Simple symmetries, such as reflection, rotation, translation, similitude, and a few other simple manifestations of the phenomenon, are all around, and we are aware of them in our everyday lives. However, there are myriads of complex symmetries (composed of a bulk of simple symmetries) as well. For example, the well-known helix represents the combination of translational and rotational symmetry. Nature produces a great variety of such complex symmetries. So do the arts. The contributions in this volume analyse selected examples (not limited to geometric symmetries). These include physical symmetries, functional (meaning not morphological) symmetries, such as symmetries in the construction of the genetic code, symmetries in human perception (e.g., in geometry education as well as in constructing physical theories), symmetries in fractal structures and structural morphology, including quasicrystal and fullerene structures in stable bindings and their applications in crystallography and architectural design, as well as color symmetries in the arts. The volume is rounded of with beautiful illustrations and presents a fascinating panorama of this interdisciplinary topic.
|
You may like...
|