![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrodinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations. "
The aim of this book is to offer a direct and self-contained access to some of the new or recent results in fluid mechanics. It gives an authoritative account on the theory of the Euler equations describing a perfect incompressible fluid. First of all, the text derives the Euler equations from a variational principle, and recalls the relations on vorticity and pressure. Various weak formulations are proposed. The book then presents the tools of analysis necessary for their study: Littlewood-Paley theory, action of Fourier multipliers on L spaces, and partial differential calculus. These techniques are then used to prove various recent results concerning vortext patches or sheets, essentially the persistence of the smoothness of the boundary of a vortex patch, even if that smoothness allows singular points, as well as the existence of weak solutions of the vorticity sheet type. The text also presents properties of microlocal (analytic or Gevrey) regularity of the solutions of Euler equations, and provides links of such properties to the smoothness in time of the flow of the solution vector field.
Aimed at graduate students, researchers and academics in mathematics, engineering, oceanography, meteorology, and mechanics, this text provides a detailed introduction to the physical theory of rotating fluids, a significant part of geophysical fluid dynamics. The text is divided into four parts, with the first part providing the physical background of the geophysical models to be analyzed. Part two is devoted to a self contained proof of the existence of weak (or strong) solutions to the imcompressible Navier-Stokes equations. Part three deals with the rapidly rotating Navier-Stokes equations, first in the whole space, where dispersion effects are considered. The case where the domain has periodic boundary conditions is then analyzed, and finally rotating Navier-Stokes equations between two plates are studied, both in the case of periodic horizontal coordinated and those in R2. In Part IV, the stability of Ekman boundary layers and boundary layer effects in magnetohydrodynamics and quasigeostrophic equations are discussed. The boundary layers which appear near vertical walls are presented and formally linked with the classical Prandlt equations. Finally spherical layers are introduced, whose study is completely open.
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schroedinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.
|
![]() ![]() You may like...
|