Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
One aspect of common sense reasoning is reasoning about normal
cases, e.g. a physician will first try to interpret symptoms by a
common disease, and will take more exotic possibilities only later
into account. Such "normality" can be encoded, e.g. by
This text centers around three main subjects. The first is the concept of modularity and independence in classical logic and nonmonotonic and other nonclassical logic, and the consequences on syntactic and semantical interpolation and language change. In particular, we will show the connection between interpolation for nonmonotonic logic and manipulation of an abstract notion of size. Modularity is essentially the ability to put partial results achieved independently together for a global result. The second aspect of the book is the authors' uniform picture of conditionals, including many-valued logics and structures on the language elements themselves and on the truth value set. The third topic explained by the authors is neighbourhood semantics, their connection to independence, and their common points and differences for various logics, e.g., for defaults and deontic logic, for the limit version of preferential logics, and for general approximation. The book will be of value to researchers and graduate students in logic and theoretical computer science.
In this book the authors present new results on interpolation for nonmonotonic logics, abstract (function) independence, the Talmudic Kal Vachomer rule, and an equational solution of contrary-to-duty obligations. The chapter on formal construction is the conceptual core of the book, where the authors combine the ideas of several types of nonmonotonic logics and their analysis of 'natural' concepts into a formal logic, a special preferential construction that combines formal clarity with the intuitive advantages of Reiter defaults, defeasible inheritance, theory revision, and epistemic considerations. It is suitable for researchers in the area of computer science and mathematical logic.
The two volumes in this advanced textbook present results, proof methods, and translations of motivational and philosophical considerations to formal constructions. In this Vol. I the author explains preferential structures and abstract size. In the associated Vol. II he presents chapters on theory revision and sums, defeasible inheritance theory, interpolation, neighbourhood semantics and deontic logic, abstract independence, and various aspects of nonmonotonic and other logics. In both volumes the text contains many exercises and some solutions, and the author limits the discussion of motivation and general context throughout, offering this only when it aids understanding of the formal material, in particular to illustrate the path from intuition to formalisation. Together these books are a suitable compendium for graduate students and researchers in the area of computer science and mathematical logic.
The two volumes in this advanced textbook present results, proof methods, and translations of motivational and philosophical considerations to formal constructions. In the associated Vol. I the author explains preferential structures and abstract size. In this Vol. II he presents chapters on theory revision and sums, defeasible inheritance theory, interpolation, neighbourhood semantics and deontic logic, abstract independence, and various aspects of nonmonotonic and other logics. In both volumes the text contains many exercises and some solutions, and the author limits the discussion of motivation and general context throughout, offering this only when it aids understanding of the formal material, in particular to illustrate the path from intuition to formalisation. Together these books are a suitable compendium for graduate students and researchers in the area of computer science and mathematical logic.
In this book the authors present new results on interpolation for nonmonotonic logics, abstract (function) independence, the Talmudic Kal Vachomer rule, and an equational solution of contrary-to-duty obligations. The chapter on formal construction is the conceptual core of the book, where the authors combine the ideas of several types of nonmonotonic logics and their analysis of 'natural' concepts into a formal logic, a special preferential construction that combines formal clarity with the intuitive advantages of Reiter defaults, defeasible inheritance, theory revision, and epistemic considerations. It is suitable for researchers in the area of computer science and mathematical logic.
Agents act on the basis of their beliefs and these beliefs change as they interact with other agents. In this book the authors propose and explain general logical tools for handling change. These tools include preferential reasoning, theory revision, and reasoning in inheritance systems, and the authors use these tools to examine nonmonotonic logic, deontic logic, counterfactuals, modal logic, intuitionistic logic, and temporal logic. This book will be of benefit to researchers engaged with artificial intelligence, and in particular agents, multiagent systems and nonmonotonic logic.
Nonmonotonic logics were created as an abstraction of some types of
common sense reasoning, analogous to the way classical logic serves
to formalize ideal reasoning about mathematical objects. These
logics are nonmonotonic in the sense that enlarging the set of
axioms does not necessarily imply an enlargement of the set of
formulas deducible from these axioms. Such situations arise
naturally, for example, in the use of information of different
degrees of reliability.
|
You may like...
|