0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (3)
  • R2,500 - R5,000 (3)
  • -
Status
Brand

Showing 1 - 6 of 6 matches in All Departments

Relativistic Quantum Mechanics (Paperback, Softcover reprint of the original 1st ed. 2015): Lawrence P Horwitz Relativistic Quantum Mechanics (Paperback, Softcover reprint of the original 1st ed. 2015)
Lawrence P Horwitz
R3,212 Discovery Miles 32 120 Ships in 10 - 15 working days

This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semi group evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. The full gauge invariance of the Stueckelberg-Schroedinger equation results in a 5D generalization of the usual gauge theories. A description of this structure and some of its consequences for both Abelian and non-Abelian fields are discussed. A review of the basic foundations of relativistic classical and quantum statistical mechanics is also given. The Bekenstein-Sanders construction for imbedding Milgrom's theory of modified spacetime structure into general relativity as an alternative to dark matter is also studied.

Relativistic Classical Mechanics and Electrodynamics (Paperback): Martin Land, Lawrence P Horwitz Relativistic Classical Mechanics and Electrodynamics (Paperback)
Martin Land, Lawrence P Horwitz
R1,647 Discovery Miles 16 470 Ships in 10 - 15 working days

This book presents classical relativistic mechanics and electrodynamics in the Feynman-Stueckelberg event-oriented framework formalized by Horwitz and Piron. The full apparatus of classical analytical mechanics is generalized to relativistic form by replacing Galilean covariance with manifest Lorentz covariance and introducing a coordinate-independent parameter to play the role of Newton's universal and monotonically advancing time. Fundamental physics is described by the -evolution of a system point through an unconstrained 8D phase space, with mass a dynamical quantity conserved under particular interactions. Classical gauge invariance leads to an electrodynamics derived from five -dependent potentials described by 5D pre-Maxwell field equations. Events trace out worldlines as advances monotonically, inducing pre-Maxwell fields by their motions, and moving under the influence of these fields. The dynamics are governed canonically by a scalar Hamiltonian that generates evolution of a 4D block universe defined at to an infinitesimally close 4D block universe defined at + . This electrodynamics, and its extension to curved space and non-Abelian gauge symmetry, is well-posed and integrable, providing a clear resolution to grandfather paradoxes. Examples include classical Coulomb scattering, electrostatics, plane waves, radiation from a simple antenna, classical pair production, classical CPT, and dynamical solutions in weak field gravitation. This classical framework will be of interest to workers in quantum theory and general relativity, as well as those interested in the classical foundations of gauge theory.

Relativistic Quantum Mechanics (Hardcover, 1st ed. 2015): Lawrence P Horwitz Relativistic Quantum Mechanics (Hardcover, 1st ed. 2015)
Lawrence P Horwitz
R4,095 Discovery Miles 40 950 Ships in 10 - 15 working days

This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semi group evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. The full gauge invariance of the Stueckelberg-Schroedinger equation results in a 5D generalization of the usual gauge theories. A description of this structure and some of its consequences for both Abelian and non-Abelian fields are discussed. A review of the basic foundations of relativistic classical and quantum statistical mechanics is also given. The Bekenstein-Sanders construction for imbedding Milgrom's theory of modified spacetime structure into general relativity as an alternative to dark matter is also studied.

Relativistic Many-Body Theory and Statistical Mechanics (Hardcover): Lawrence P Horwitz, Rafael I. Arshansky Relativistic Many-Body Theory and Statistical Mechanics (Hardcover)
Lawrence P Horwitz, Rafael I. Arshansky
R2,271 Discovery Miles 22 710 Ships in 10 - 15 working days

In 1941, E.C.G. Stueckelberg wrote a paper, based on ideas of V. Fock, that established the foundations of a theory that could covariantly describe the classical and quantum relativistic mechanics of a single particle. Horwitz and Piron extended the applicability of this theory in 1973 (to be called the SHP theory) to the many-body problem. It is the purpose of this book to explain this development and provide examples of its applications. We first review the basic ideas of the SHP theory, both classical and quantum, and develop the appropriate form of electromagnetism on this dynamics. After studying the two body problem classically and quantum mechanically, we formulate the N-body problem. We then develop the general quantum scattering theory for the N-body problem and prove a quantum mechanical relativistically covariant form of the Gell-Mann-Low theorem. The quantum theory of relativistic spin is then developed, including spin-statistics, providing the necessary apparatus for Clebsch-Gordan additivity, and we then discuss the phenomenon of entanglement at unequal times. In the second part, we develop relativistic statistical mechanics, including a mechanism for stability of the off-shell mass, and a high temperature phase transition to the mass shell. Finally, some applications are given, such as the explanation of the Lindneret alexperiment, the proposed experiment of Palacios et al which should demonstrate relativistic entanglement (at unequal times), the space-time lattice, low energy nuclear reactions and applications to black hole physics.

Relativistic Many-Body Theory and Statistical Mechanics (Paperback): Lawrence P Horwitz, Rafael I. Arshansky Relativistic Many-Body Theory and Statistical Mechanics (Paperback)
Lawrence P Horwitz, Rafael I. Arshansky
R1,698 Discovery Miles 16 980 Ships in 10 - 15 working days

In 1941, E.C.G. Stueckelberg wrote a paper, based on ideas of V. Fock, that established the foundations of a theory that could covariantly describe the classical and quantum relativistic mechanics of a single particle. Horwitz and Piron extended the applicability of this theory in 1973 (to be called the SHP theory) to the many-body problem. It is the purpose of this book to explain this development and provide examples of its applications. We first review the basic ideas of the SHP theory, both classical and quantum, and develop the appropriate form of electromagnetism on this dynamics. After studying the two body problem classically and quantum mechanically, we formulate the N-body problem. We then develop the general quantum scattering theory for the N-body problem and prove a quantum mechanical relativistically covariant form of the Gell-Mann-Low theorem. The quantum theory of relativistic spin is then developed, including spin-statistics, providing the necessary apparatus for Clebsch-Gordan additivity, and we then discuss the phenomenon of entanglement at unequal times. In the second part, we develop relativistic statistical mechanics, including a mechanism for stability of the off-shell mass, and a high temperature phase transition to the mass shell. Finally, some applications are given, such as the explanation of the Lindneret alexperiment, the proposed experiment of Palacios et al which should demonstrate relativistic entanglement (at unequal times), the space-time lattice, low energy nuclear reactions and applications to black hole physics.

Quantum Statistical Mechanics (Hardcover): William C Schieve, Lawrence P Horwitz Quantum Statistical Mechanics (Hardcover)
William C Schieve, Lawrence P Horwitz
R2,940 Discovery Miles 29 400 Ships in 10 - 15 working days

Many-body theory stands at the foundation of modern quantum statistical mechanics. It is introduced here to graduate students in physics, chemistry, engineering and biology. The book provides a contemporary understanding of irreversibility, particularly in quantum systems. It explains entropy production in quantum kinetic theory and in the master equation formulation of non-equilibrium statistical mechanics. The first half of the book focuses on the foundations of non-equilibrium statistical mechanics with emphasis on quantum mechanics. The second half of the book contains alternative views of quantum statistical mechanics, and topics of current interest for advanced graduate level study and research. Unique to textbooks on this subject, this book contains a discussion of the fundamental Gleason theorem. Quantum entanglements are treated in application to quantum computation and the difficulties arising from decoherence. The relativistic generalization of the Boltzmann equation is derived, and modern transport applications to reservoir ballistic transport are developed.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Higher
Michael Buble CD  (1)
R487 Discovery Miles 4 870
Cable Guys Controller and Smartphone…
R399 R349 Discovery Miles 3 490
Hot Wheels Aluminium Bottle…
R128 Discovery Miles 1 280
Sylvanian Families - Walnut Squirrel…
R749 R579 Discovery Miles 5 790
Speak Now - Taylor's Version
Taylor Swift CD R521 Discovery Miles 5 210
Kingston Technology DataTraveler Exodia…
 (1)
R106 Discovery Miles 1 060
Clare - The Killing Of A Gentle Activist
Christopher Clark Paperback R360 R49 Discovery Miles 490
Higher Truth
Chris Cornell CD  (1)
R184 R149 Discovery Miles 1 490
Razer Kaira Pro Wireless Gaming…
R3,656 Discovery Miles 36 560
Too Beautiful To Break
Tessa Bailey Paperback R280 R224 Discovery Miles 2 240

 

Partners