Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 15 of 15 matches in All Departments
The status of crop biotechnology before 2001 was reviewed in Transgenic Crops I-III, but recent advances in plant cell and molecular biology have prompted the need for new volumes. This volume is devoted to fruit, trees and beverage crops. It presents the current knowledge of plant biotechnology as an important tool for crop improvement and includes up-to-date methodologies.
Genetic engineering is a powerful tool for crop improvement. Crop biotechnology before 2001 was reviewed in Transgenic Crops I-III, but recent advances in plant cell and molecular biology have prompted the need for new volumes. Transgenic Crops IV deals with cereals, vegetables, root crops, herbs and spices. Section I is an introductory chapter on the impact of plant biotechnology in agriculture. Section II focuses on cereals (rice, wheat, maize, rye, pearl millet, barley, oats), while Section III is directed to vegetable crops (tomato, cucumber, eggplant, lettuce, chickpea, common beans and cowpeas, carrot, radish). Root crops (potato, cassava, sweet potato, sugar beet) are included in Section IV, with herbs and spices (sweet and hot peppers, onion, garlic and related species, mint) in Section V. This volume is an invaluable reference for plant breeders, researchers and graduate students in the fields of plant biotechnology, agronomy, horticulture, genetics and both plant cell and molecular biology.
This is the first of two volumes on Gentianaceae. Comprising twelve chapters, it centres upon the characterization and ecology of Gentianaceae worldwide, with emphasis on the application of molecular and cytological approaches in relation to taxonomy. The first three chapters consider the classification of the family and review the advances in research since the earlier revision published in 2002, which resulted in the reclassification of some plants and the naming of new genera. The next chapter provides the most comprehensive report to date of the systematics of South American Neotropical woody Gentians. Other reviews include details of the Gentianaceae in Eastern Europe. The key biochemical steps that result in the diversity of Gentian flower colors, the cytology of European species and an historical account of the importance of Gentians in herbal medicines are also covered. Furthermore, an analysis of gene expression in overwintering buds is presented, discussing several aspects of plant taxonomy, phenotypic characteristics, phylogeography and pedigree. Two contributions highlight the importance of Gentians in India, and the last chapter presents evidence for the importance of Glomeromycota in developing arbuscular mycorrhizal associations with the roots of Gentians. This volume provides the basis for the biotechnological approaches that are considered in the companion book "The Gentianaceae Volume 2: Biotechnology and Applications.""
Genetic engineering is a powerful tool for crop improvement. The status of crop biotechnology before 2001 was reviewed in Transgenic Crops I-III, but recent advances in plant cell and molecular biology have prompted the need for new volumes. Following Transgenic Crops IV (2007) on cereals, vegetables, root crops, herbs, and spices, and Transgenic Crops V (2007) on fruits, trees, and beverage crops, this volume, Transgenic Crops VI, contains the following sections: Oils and Fibers, Medicinal Crops, Ornamental Crops, Forages and Grains, Regulatory and Intellectual Property of Genetically Manipulated Plants. It is an invaluable reference for plant breeders, researchers and graduate students in the fields of plant biotechnology, agronomy, horticulture, forestry, genetics, and both plant cell and molecular biology.
This book, the second of two volumes on the Gentianaceae, is devoted to aspects of biotechnology and their applications. It consists of 18 chapters and covers micropropagation by means of organogenesis or somatic embryogenesis, and single cell manipulation of various species belonging to the horticultural genera Blakstonia, Centaurium, Gentiana, Gentianalla and Swertia. Furthermore, the application of somatic cell hybridization, haploidization and genetic variation arising from tissue and organ culture for the production of plants with new horticultural traits, such as new flower colors or sizes, or with special pharmaceutical values, is treated in detail. Also discussed are molecular markers that facilitate breeding and cultivar identification, the preservation of genetic resources by cryopreservation, the postharvest physiology of cut Gentian flowers and potted plants, and different analytical methods for the evaluation of Gentians as sources of secondary metabolites, such as xanthones and flavonoids, secoiridoids and C-glucoflavonoids, and their positive impacts on human health. This volume as well as the companion book The Gentianaceae - Volume 1: Characterization and Ecology will serve as key reference works for scientists and students in the fields of botany, plant breeding, biotechnology and horticulture, as well as professional gardeners.
In this book, authors who are experts in their fields describe current advances on commercial crops and key enabling technologies that will underpin future advances in biotechnology. They discuss state of the art discoveries as well as future challenges. Tremendous progress has been made in introducing novel genes and traits into plant genomes since the first creation of transgenic plants thirty years ago, and the first commercialization of genetically modified maize in 1996. Consequently, cultivation of biotech crops with useful traits has increased more than 100-fold from 1.7 million hectares in 1996 to over 175 million hectares globally in 2013. This achievement has been made possible by continued advances in understanding the basic molecular biology of regulatory sequences to modulate gene expression, enhancement of protein synthesis and new technologies for transformation of crop plants. This book has three sections that encompass knowledge on genetically modified (GM) food crops that are currently used by consumers, those that are anticipated to reach the market place in the near future and enabling technologies that will facilitate the development of next generation GM crops. Section I focuses only on genetically modified maize and soybean (3 chapters each), while Section II discusses the GM food crops rice, wheat, sorghum, vegetables and sugar cane. Section III covers exciting recent developments in several novel enabling technologies, including gene targeting, minichromosomes, and in planta transient expression systems.
Manyexcitingdiscoveriesinrecentdecadeshavecontributednewknowledgeto ourunderstandingofthemechanismsthatregulatevariousstagesofplantgrowth anddevelopment. Suchinformation,coupledwithadvancesincellandmolecular biology,isfundamentaltocropimprovementusingbiotechnologicalapproaches. Twovolumesconstitutethepresentwork. The?rst,comprising22chapters, commenceswithintroductionsrelatingtogeneregulatorymodelsforplantdev- opmentandcropimprovement,particularlytheuseofArabidopsisasamodelplant. Thesechaptersarefollowedbyspeci?ctopicsthatfocusondifferentdevelopmental aspectsassociatedwithvegetativeandreproductivephasesofthelifecycleofa plant. Six chapters discuss vegetative growth and development. Their contents considertopicssuchasshootbranching,buddormancyandgrowth,thedevel- ment of roots, nodules and tubers, and senescence. The reproductive phase of plantdevelopmentisin14chaptersthatpresenttopicssuchas?oralorganinit- tionandtheregulationof?owering,thedevelopmentofmaleandfemalegametes, pollengerminationandtubegrowth,fertilization,fruitdevelopmentandripening, seed development, dormancy, germination, and apomixis. Male sterility and self-incompatibilityarealsodiscussed. Volume2has20chapters,threeofwhichreviewrecentadvancesinsomatic embryogenesis,microsporeembryogenesisandsomaclonalvariation. Sevenofthe chapterstargetplantprocessesandtheirregulation,includingphotosynthatepartiti- ing,seedmaturationandseedstorageproteinbiosynthesis,theproductionandregu- tionoffattyacids,vitamins,alkaloidsand?owerpigments,and?owerscent. This secondbookalsocontainsfourchaptersonhormonalandenvironmentalsignaling (aminocompounds-containinglipids,auxin,cytokinin,andlight)intheregulationof plantdevelopment;othertopicsencompassthemoleculargeneticsofdevelopmental regulation,includingRNAsilencing,DNAmethylation,epigenetics,activationt- ging,homologousrecombination,andtheengineeringofsyntheticpromoters. Thesebookswillserveaskeyreferencesforadvancedstudentsandresearchers involved in a range of plant-orientated disciplines, including genetics, cell and molecularbiology,functionalgenomics,andbiotechnology. August2009 E-C. PuaandM. R. Davey v Contents PartI CellDifferentiationandDevelopmentInVitro 1 DevelopmentalBiologyofSomaticEmbryogenesis ...3 R. J. Rose,F. R. Mantiri,S. Kurdyukov,S-K. Chen,X-D. Wang, K. E. Nolan,andM. B. Sheahan 1. 1 Introduction ...3 1. 2 BasicRequirementsforInVitroSE ...4 1. 3 ExplantandStemCellBiology ...5 1. 3. 1 Genotype ...5 1. 3. 2 ExplantCells ...6 1. 4 EarliestEventinEmbryogenesis-AsymmetricCellDivision ...8 1. 4. 1 CellWallinEstablishmentofPolarity,DivisionAsymmetry andCellFate ...8 1. 4. 2 DivisionAsymmetryintheInitiationofSE ...10 1. 4. 3 AsymmetricDivisionandtheSuspensorinSE ...10 1. 5 StressComponentintheInitiationofSE ...11 1. 5. 1 ReactiveOxygenSpecies ...11 1. 5. 2 Stress-RelatedHormoneSignalling ...12 1. 6 HormonesandtheInitiationofSE ...13 1. 7 InductionofSEbyOver-ExpressionofLeafyCotyledon TranscriptionFactorsandTheirRelationshiptoSEInductionand Repression-theGAConnection ...14 1. 8 ABA,StressandGA ...16 1. 9 SolubleSignalsandCell-CellInteractionsthatPromoteSEin SuspensionCultures ...16 1. 9. 1 SecretedProteinsthatIn?uenceSE ...16 1. 9. 2 AGPSignallinginSE:MechanismsandInteractionsBetween SignallingPathways ...17 1. 9. 3 Cell-AsymmetricCellDivision ...8 1. 4. 1 CellWallinEstablishmentofPolarity,DivisionAsymmetry andCellFate ...8 1. 4. 2 DivisionAsymmetryintheInitiationofSE ...10 1. 4. 3 AsymmetricDivisionandtheSuspensorinSE ...10 1. 5 StressComponentintheInitiationofSE ...11 1. 5. 1 ReactiveOxygenSpecies ...11 1. 5. 2 Stress-RelatedHormoneSignalling ...12 1. 6 HormonesandtheInitiationofSE ...13 1. 7 InductionofSEbyOver-ExpressionofLeafyCotyledon TranscriptionFactorsandTheirRelationshiptoSEInductionand Repression-theGAConnection ...14 1. 8 ABA,StressandGA ...16 1. 9 SolubleSignalsandCell-CellInteractionsthatPromoteSEin SuspensionCultures ...16 1. 9. 1 SecretedProteinsthatIn?uenceSE ...16 1. 9. 2 AGPSignallinginSE:MechanismsandInteractionsBetween SignallingPathways ...17 1. 9. 3 Cell-Manyexcitingdiscoveriesinrecentdecadeshavecontributednewknowledgeto ourunderstandingofthemechanismsthatregulatevariousstagesofplantgrowth anddevelopment. Suchinformation,coupledwithadvancesincellandmolecular biology,isfundamentaltocropimprovementusingbiotechnologicalapproaches. Twovolumesconstitutethepresentwork. The?rst,comprising22chapters, commenceswithintroductionsrelatingtogeneregulatorymodelsforplantdev- opmentandcropimprovement,particularlytheuseofArabidopsisasamodelplant. Thesechaptersarefollowedbyspeci?ctopicsthatfocusondifferentdevelopmental aspectsassociatedwithvegetativeandreproductivephasesofthelifecycleofa plant. Six chapters discuss vegetative growth and development. Their contents considertopicssuchasshootbranching,buddormancyandgrowth,thedevel- ment of roots, nodules and tubers, and senescence. The reproductive phase of plantdevelopmentisin14chaptersthatpresenttopicssuchas?oralorganinit- tionandtheregulationof?owering,thedevelopmentofmaleandfemalegametes, pollengerminationandtubegrowth,fertilization,fruitdevelopmentandripening, seed development, dormancy, germination, and apomixis. Male sterility and self-incompatibilityarealsodiscussed. Volume2has20chapters,threeofwhichreviewrecentadvancesinsomatic embryogenesis,microsporeembryogenesisandsomaclonalvariation. Sevenofthe chapterstargetplantprocessesandtheirregulation,includingphotosynthatepartiti- ing,seedmaturationandseedstorageproteinbiosynthesis,theproductionandregu- tionoffattyacids,vitamins,alkaloidsand?owerpigments,and?owerscent. This secondbookalsocontainsfourchaptersonhormonalandenvironmentalsignaling (aminocompounds-containinglipids,auxin,cytokinin,andlight)intheregulationof plantdevelopment;othertopicsencompassthemoleculargeneticsofdevelopmental regulation,includingRNAsilencing,DNAmethylation,epigenetics,activationt- ging,homologousrecombination,andtheengineeringofsyntheticpromoters. Thesebookswillserveaskeyreferencesforadvancedstudentsandresearchers involved in a range of plant-orientated disciplines, including genetics, cell and molecularbiology,functionalgenomics,andbiotechnology. August2009 E-C. PuaandM. R. Davey v Contents PartI CellDifferentiationandDevelopmentInVitro 1 DevelopmentalBiologyofSomaticEmbryogenesis ...3 R. J. Rose,F. R. Mantiri,S. Kurdyukov,S-K. Chen,X-D. Wang, K. E. Nolan,andM. B. Sheahan 1. 1 Introduction ...3 1. 2 BasicRequirementsforInVitroSE ...4 1. 3 ExplantandStemCellBiology ...5 1. 3. 1 Genotype ...5 1. 3. 2 ExplantCells ...6 1. 4 EarliestEventinEmbryogenesis-AsymmetricCellDivision ...8 1. 4. 1 CellWallinEstablishmentofPolarity,DivisionAsymmetry andCellFate ...8 1. 4. 2 DivisionAsymmetryintheInitiationofSE ...10 1. 4. 3 AsymmetricDivisionandtheSuspensorinSE ...10 1. 5 StressComponentintheInitiationofSE ...11 1. 5. 1 ReactiveOxygenSpecies ...11 1. 5. 2 Stress-RelatedHormoneSignalling ...12 1. 6 HormonesandtheInitiationofSE ...13 1. 7 InductionofSEbyOver-ExpressionofLeafyCotyledon TranscriptionFactorsandTheirRelationshiptoSEInductionand Repression-theGAConnection ...14 1. 8 ABA,StressandGA ...16 1. 9 SolubleSignalsandCell-CellInteractionsthatPromoteSEin SuspensionCultures ...16 1. 9. 1 SecretedProteinsthatIn?uenceSE ...16 1. 9. 2 AGPSignallinginSE:MechanismsandInteractionsBetween SignallingPathways ...17 1. 9. 3 Cell-CellInteractionandRelevancetoSEinSuspension Cultures ...18 vii viii Contents 1. 10 DevelopmentProgramAfterSEInduction ...19 1. 11 ConcludingRemarksandaModelBasedonStudiesin Medicagotruncatula ...19 1. 12 SEandBiotechnology ...20 References ...21 2 MicrosporeEmbryogenesis ...27 A. Olmedilla 2. 1 Introduction ...27 2. 2 DiscoveryoftheProductionofHaploidsbyAntherCulture ...29 2. 3 StrategiesfortheInductionofMicrosporeEmbryogenesis ...29 2. 4 In?uenceofDifferentFactorsinMicrosporeEmbryogenesis ...30 2. 4. 1 Genotype ...30 2. 4. 2 DonorPlantPhysiology ...31 2. 4. 3 StageofPollenDevelopment ...
This book, the second of two volumes on the Gentianaceae, is devoted to aspects of biotechnology and their applications. It consists of 18 chapters and covers micropropagation by means of organogenesis or somatic embryogenesis, and single cell manipulation of various species belonging to the horticultural genera Blakstonia, Centaurium, Gentiana, Gentianalla and Swertia. Furthermore, the application of somatic cell hybridization, haploidization and genetic variation arising from tissue and organ culture for the production of plants with new horticultural traits, such as new flower colors or sizes, or with special pharmaceutical values, is treated in detail. Also discussed are molecular markers that facilitate breeding and cultivar identification, the preservation of genetic resources by cryopreservation, the postharvest physiology of cut Gentian flowers and potted plants, and different analytical methods for the evaluation of Gentians as sources of secondary metabolites, such as xanthones and flavonoids, secoiridoids and C-glucoflavonoids, and their positive impacts on human health. This volume as well as the companion book The Gentianaceae – Volume 1: Characterization and Ecology will serve as key reference works for scientists and students in the fields of botany, plant breeding, biotechnology and horticulture, as well as professional gardeners.
This is the first of two volumes on Gentianaceae. Comprising twelve chapters, it centres upon the characterization and ecology of Gentianaceae worldwide, with emphasis on the application of molecular and cytological approaches in relation to taxonomy. The first three chapters consider the classification of the family and review the advances in research since the earlier revision published in 2002, which resulted in the reclassification of some plants and the naming of new genera. The next chapter provides the most comprehensive report to date of the systematics of South American Neotropical woody Gentians. Other reviews include details of the Gentianaceae in Eastern Europe. The key biochemical steps that result in the diversity of Gentian flower colors, the cytology of European species and an historical account of the importance of Gentians in herbal medicines are also covered. Furthermore, an analysis of gene expression in overwintering buds is presented, discussing several aspects of plant taxonomy, phenotypic characteristics, phylogeography and pedigree. Two contributions highlight the importance of Gentians in India, and the last chapter presents evidence for the importance of Glomeromycota in developing arbuscular mycorrhizal associations with the roots of Gentians. This volume provides the basis for the biotechnological approaches that are considered in the companion book The Gentianaceae - Volume 2: Biotechnology and Applications.
Many exciting discoveries in recent decades have contributed new knowledge to our understanding of the mechanisms that regulate various stages of plant growth and development. Such information, coupled with advances in cell and molecular biology, is fundamental to crop improvement using biotechnological approaches. Two volumes constitute the present work. The ?rst, comprising 22 chapters, commences with introductions relating to gene regulatory models for plant dev- opment and crop improvement, particularly the use of Arabidopsis as a model plant. These chapters are followed by speci?c topics that focus on different developmental aspects associated with vegetative and reproductive phases of the life cycle of a plant. Six chapters discuss vegetative growth and development. Their contents consider topics such as shoot branching, bud dormancy and growth, the devel- ment of roots, nodules and tubers, and senescence. The reproductive phase of plant development is in 14 chapters that present topics such as ?oral organ init- tion and the regulation of ?owering, the development of male and female gametes, pollen germination and tube growth, fertilization, fruit development and ripening, seed development, dormancy, germination, and apomixis. Male sterility and self-incompatibility are also discussed.
Manyexcitingdiscoveriesinrecentdecadeshavecontributednewknowledgeto ourunderstandingofthemechanismsthatregulatevariousstagesofplantgrowth anddevelopment. Suchinformation,coupledwithadvancesincellandmolecular biology,isfundamentaltocropimprovementusingbiotechnologicalapproaches. Twovolumesconstitutethepresentwork. The?rst,comprising22chapters, commenceswithintroductionsrelatingtogeneregulatorymodelsforplantdev- opmentandcropimprovement,particularlytheuseofArabidopsisasamodelplant. Thesechaptersarefollowedbyspeci?ctopicsthatfocusondifferentdevelopmental aspectsassociatedwithvegetativeandreproductivephasesofthelifecycleofa plant. Six chapters discuss vegetative growth and development. Their contents considertopicssuchasshootbranching,buddormancyandgrowth,thedevel- ment of roots, nodules and tubers, and senescence. The reproductive phase of plantdevelopmentisin14chaptersthatpresenttopicssuchas?oralorganinit- tionandtheregulationof?owering,thedevelopmentofmaleandfemalegametes, pollengerminationandtubegrowth,fertilization,fruitdevelopmentandripening, seed development, dormancy, germination, and apomixis. Male sterility and self-incompatibilityarealsodiscussed. Volume2has20chapters,threeofwhichreviewrecentadvancesinsomatic embryogenesis,microsporeembryogenesisandsomaclonalvariation. Sevenofthe chapterstargetplantprocessesandtheirregulation,includingphotosynthatepartiti- ing,seedmaturationandseedstorageproteinbiosynthesis,theproductionandregu- tionoffattyacids,vitamins,alkaloidsand?owerpigments,and?owerscent. This secondbookalsocontainsfourchaptersonhormonalandenvironmentalsignaling (aminocompounds-containinglipids,auxin,cytokinin,andlight)intheregulationof plantdevelopment;othertopicsencompassthemoleculargeneticsofdevelopmental regulation,includingRNAsilencing,DNAmethylation,epigenetics,activationt- ging,homologousrecombination,andtheengineeringofsyntheticpromoters. Thesebookswillserveaskeyreferencesforadvancedstudentsandresearchers involved in a range of plant-orientated disciplines, including genetics, cell and molecularbiology,functionalgenomics,andbiotechnology. August2009 E-C. PuaandM. R. Davey v Contents PartI CellDifferentiationandDevelopmentInVitro 1 DevelopmentalBiologyofSomaticEmbryogenesis ...3 R. J. Rose,F. R. Mantiri,S. Kurdyukov,S-K. Chen,X-D. Wang, K. E. Nolan,andM. B. Sheahan 1. 1 Introduction ...3 1. 2 BasicRequirementsforInVitroSE ...4 1. 3 ExplantandStemCellBiology ...5 1. 3. 1 Genotype ...5 1. 3. 2 ExplantCells ...6 1. 4 EarliestEventinEmbryogenesis-AsymmetricCellDivision ...8 1. 4. 1 CellWallinEstablishmentofPolarity,DivisionAsymmetry andCellFate ...8 1. 4. 2 DivisionAsymmetryintheInitiationofSE ...10 1. 4. 3 AsymmetricDivisionandtheSuspensorinSE ...10 1. 5 StressComponentintheInitiationofSE ...11 1. 5. 1 ReactiveOxygenSpecies ...11 1. 5. 2 Stress-RelatedHormoneSignalling ...12 1. 6 HormonesandtheInitiationofSE ...13 1. 7 InductionofSEbyOver-ExpressionofLeafyCotyledon TranscriptionFactorsandTheirRelationshiptoSEInductionand Repression-theGAConnection ...14 1. 8 ABA,StressandGA ...16 1. 9 SolubleSignalsandCell-CellInteractionsthatPromoteSEin SuspensionCultures ...16 1. 9. 1 SecretedProteinsthatIn?uenceSE ...16 1. 9. 2 AGPSignallinginSE:MechanismsandInteractionsBetween SignallingPathways ...17 1. 9. 3 Cell-AsymmetricCellDivision ...8 1. 4. 1 CellWallinEstablishmentofPolarity,DivisionAsymmetry andCellFate ...8 1. 4. 2 DivisionAsymmetryintheInitiationofSE ...10 1. 4. 3 AsymmetricDivisionandtheSuspensorinSE ...10 1. 5 StressComponentintheInitiationofSE ...11 1. 5. 1 ReactiveOxygenSpecies ...11 1. 5. 2 Stress-RelatedHormoneSignalling ...12 1. 6 HormonesandtheInitiationofSE ...13 1. 7 InductionofSEbyOver-ExpressionofLeafyCotyledon TranscriptionFactorsandTheirRelationshiptoSEInductionand Repression-theGAConnection ...14 1. 8 ABA,StressandGA ...16 1. 9 SolubleSignalsandCell-CellInteractionsthatPromoteSEin SuspensionCultures ...16 1. 9. 1 SecretedProteinsthatIn?uenceSE ...16 1. 9. 2 AGPSignallinginSE:MechanismsandInteractionsBetween SignallingPathways ...17 1. 9. 3 Cell-Manyexcitingdiscoveriesinrecentdecadeshavecontributednewknowledgeto ourunderstandingofthemechanismsthatregulatevariousstagesofplantgrowth anddevelopment. Suchinformation,coupledwithadvancesincellandmolecular biology,isfundamentaltocropimprovementusingbiotechnologicalapproaches. Twovolumesconstitutethepresentwork. The?rst,comprising22chapters, commenceswithintroductionsrelatingtogeneregulatorymodelsforplantdev- opmentandcropimprovement,particularlytheuseofArabidopsisasamodelplant. Thesechaptersarefollowedbyspeci?ctopicsthatfocusondifferentdevelopmental aspectsassociatedwithvegetativeandreproductivephasesofthelifecycleofa plant. Six chapters discuss vegetative growth and development. Their contents considertopicssuchasshootbranching,buddormancyandgrowth,thedevel- ment of roots, nodules and tubers, and senescence. The reproductive phase of plantdevelopmentisin14chaptersthatpresenttopicssuchas?oralorganinit- tionandtheregulationof?owering,thedevelopmentofmaleandfemalegametes, pollengerminationandtubegrowth,fertilization,fruitdevelopmentandripening, seed development, dormancy, germination, and apomixis. Male sterility and self-incompatibilityarealsodiscussed. Volume2has20chapters,threeofwhichreviewrecentadvancesinsomatic embryogenesis,microsporeembryogenesisandsomaclonalvariation. Sevenofthe chapterstargetplantprocessesandtheirregulation,includingphotosynthatepartiti- ing,seedmaturationandseedstorageproteinbiosynthesis,theproductionandregu- tionoffattyacids,vitamins,alkaloidsand?owerpigments,and?owerscent. This secondbookalsocontainsfourchaptersonhormonalandenvironmentalsignaling (aminocompounds-containinglipids,auxin,cytokinin,andlight)intheregulationof plantdevelopment;othertopicsencompassthemoleculargeneticsofdevelopmental regulation,includingRNAsilencing,DNAmethylation,epigenetics,activationt- ging,homologousrecombination,andtheengineeringofsyntheticpromoters. Thesebookswillserveaskeyreferencesforadvancedstudentsandresearchers involved in a range of plant-orientated disciplines, including genetics, cell and molecularbiology,functionalgenomics,andbiotechnology. August2009 E-C. PuaandM. R. Davey v Contents PartI CellDifferentiationandDevelopmentInVitro 1 DevelopmentalBiologyofSomaticEmbryogenesis ...3 R. J. Rose,F. R. Mantiri,S. Kurdyukov,S-K. Chen,X-D. Wang, K. E. Nolan,andM. B. Sheahan 1. 1 Introduction ...3 1. 2 BasicRequirementsforInVitroSE ...4 1. 3 ExplantandStemCellBiology ...5 1. 3. 1 Genotype ...5 1. 3. 2 ExplantCells ...6 1. 4 EarliestEventinEmbryogenesis-AsymmetricCellDivision ...8 1. 4. 1 CellWallinEstablishmentofPolarity,DivisionAsymmetry andCellFate ...8 1. 4. 2 DivisionAsymmetryintheInitiationofSE ...10 1. 4. 3 AsymmetricDivisionandtheSuspensorinSE ...10 1. 5 StressComponentintheInitiationofSE ...11 1. 5. 1 ReactiveOxygenSpecies ...11 1. 5. 2 Stress-RelatedHormoneSignalling ...12 1. 6 HormonesandtheInitiationofSE ...13 1. 7 InductionofSEbyOver-ExpressionofLeafyCotyledon TranscriptionFactorsandTheirRelationshiptoSEInductionand Repression-theGAConnection ...14 1. 8 ABA,StressandGA ...16 1. 9 SolubleSignalsandCell-CellInteractionsthatPromoteSEin SuspensionCultures ...16 1. 9. 1 SecretedProteinsthatIn?uenceSE ...16 1. 9. 2 AGPSignallinginSE:MechanismsandInteractionsBetween SignallingPathways ...17 1. 9. 3 Cell-CellInteractionandRelevancetoSEinSuspension Cultures ...18 vii viii Contents 1. 10 DevelopmentProgramAfterSEInduction ...19 1. 11 ConcludingRemarksandaModelBasedonStudiesin Medicagotruncatula ...19 1. 12 SEandBiotechnology ...20 References ...21 2 MicrosporeEmbryogenesis ...27 A. Olmedilla 2. 1 Introduction ...27 2. 2 DiscoveryoftheProductionofHaploidsbyAntherCulture ...29 2. 3 StrategiesfortheInductionofMicrosporeEmbryogenesis ...29 2. 4 In?uenceofDifferentFactorsinMicrosporeEmbryogenesis ...30 2. 4. 1 Genotype ...30 2. 4. 2 DonorPlantPhysiology ...31 2. 4. 3 StageofPollenDevelopment ...
Genetic engineering is a powerful tool for crop improvement. The status of crop biotechnology before 2001 was reviewed in Transgenic Crops I-III, but recent advances in plant cell and molecular biology have prompted the need for new volumes. Following Transgenic Crops IV (2007) on cereals, vegetables, root crops, herbs, and spices, and Transgenic Crops V (2007) on fruits, trees, and beverage crops, this volume, Transgenic Crops VI, contains the following sections: Oils and Fibers, Medicinal Crops, Ornamental Crops, Forages and Grains, Regulatory and Intellectual Property of Genetically Manipulated Plants. It is an invaluable reference for plant breeders, researchers and graduate students in the fields of plant biotechnology, agronomy, horticulture, forestry, genetics, and both plant cell and molecular biology.
Genetic engineering is a powerful tool for crop improvement. The
status of crop biotechnology before 2001 was reviewed in Transgenic
Crops I-III, but recent advances in plant cell and molecular
biology have prompted the need for new volumes.
In this book, authors who are experts in their fields describe current advances on commercial crops and key enabling technologies that will underpin future advances in biotechnology. They discuss state of the art discoveries as well as future challenges. Tremendous progress has been made in introducing novel genes and traits into plant genomes since the first creation of transgenic plants thirty years ago, and the first commercialization of genetically modified maize in 1996. Consequently, cultivation of biotech crops with useful traits has increased more than 100-fold from 1.7 million hectares in 1996 to over 175 million hectares globally in 2013. This achievement has been made possible by continued advances in understanding the basic molecular biology of regulatory sequences to modulate gene expression, enhancement of protein synthesis and new technologies for transformation of crop plants. This book has three sections that encompass knowledge on genetically modified (GM) food crops that are currently used by consumers, those that are anticipated to reach the market place in the near future and enabling technologies that will facilitate the development of next generation GM crops. Section I focuses only on genetically modified maize and soybean (3 chapters each), while Section II discusses the GM food crops rice, wheat, sorghum, vegetables and sugar cane. Section III covers exciting recent developments in several novel enabling technologies, including gene targeting, minichromosomes, and in planta transient expression systems.
This work, comprising two volumes, reviews recent advances in plant developmental biology and explores the possibility of their biotechnological applications. The work is a key reference for plant breeders, researchers and graduate students.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|