Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This book addresses the emerging trend of smart grids in power systems. It discusses the advent of smart grids and selected technical implications; further, by combining the perspectives of researchers from Europe and South America, the book captures the status quo of and approaches to smart grids in a wide range of countries. It describes the basic concepts, enabling readers to understand the theoretical aspects behind smart grid formation, while also examining current challenges and philosophical discussions. Like the industrial revolution and the birth of the Internet, smart grids are certain to change the way people use electricity. In this regard, a new term - the "prosumer" - is used to describe consumers who may sometimes also be energy producers. This is particularly appealing if we bear in mind that most of the distributed power generation in smart grids does not involve carbon emissions. At first glance, the option of generating their own power could move consumers to leave their current energy provider. Yet the authors argue that doing so is not a wise choice: utilities will play a central role in this new scenario and should not be ignored.
This book offers a detailed guide to the design and simulation of basic control methods applied to microgrids in various operating modes, using MATLAB (R) Simulink (R) software. It includes discussions on the performance of each configuration, as well as the advantages and limitations of the droop control method. The content is organised didactically, with a level of mathematical and scientific rigour suitable for undergraduate and graduate programmes, as well as for industry professionals. The use of MATLAB (R) Simulink (R) software facilitates the learning process with regard to modelling and simulating power electronic converters at the interface of distributed energy resource (DER) systems. The book also features a wealth of illustrations, schematics, and simulation results. Given its scope, it will greatly benefit undergraduate and graduate students in the fields of electrical and electronics engineering, as well as professionals working in microgrid design and implementation.
Control circuits are a key element in the operation and performance of power electronics converters. This book describes practical issues related to the design and implementation of these control circuits, with a focus on the presentation of the state-of-the-art control solutions, including circuit technology, design techniques, and implementation issues. Topics covered include PWM-based sliding mode control schemes for DC-DC power converters; synthetic-ripple hysteretic controllers for DC/DC converters; one-cycle controlled single phase power inverters; digital PWM control of high-frequency DC-DC switched-mode power converters; microcontroller-based electronic ballasts for high-intensity-discharge lamps; FPGA-based controllers for direct sliding mode control of PWM boost rectifiers; DSP controllers for three-phase unity-power-factor rectifiers and voltage-sourced inverters; FPGADSP controllers for DC-DC converters in renewable energy applications; topologies, modulation and control of multilevel converters; state-of-the-art intelligent gate drivers for IGBT power modules; control of integrated switched capacitor power converters; DSP-based natural frame control schemes for three-phase unity-power-factor rectifiers; dual-core DSP for control and communication in AC microgrids; and the use of computational intelligence for designing power electronics converters. Control Circuits in Power Electronics is an essential reading for researchers, advanced students and practicing design engineers working in power electronics.
|
You may like...
|