![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
High Speed Optical Communications provides a comprehensive coverage of the design and modelling of the devices and systems required for optical communication networks. It will prove to be the essential reference text for those engineers implementing and designing such networks and is one of the few works dealing with modelling and simulation of optical links at the levels both of devices and of systems. Simulation experiments and results are included, as are details of devices currently under development in research laboratories. Covers both the technical details of optical devices and their behaviour in complex systems; Includes results of applications experiments. Optical and telecommuntications scientists working in research and development and design engineers working in the field will find this text to be an indispensable resource.
PHEMT devices and their incorporation into advanced monolithic integrated circuits is the enabling technology for modern microwave/millimeter wave system applications. Although still in its infancy, PHEMT MIMIC technology is already finding applications in both military and commercial systems, including radar, communication and automotive technologies. The successful team in a globally competitive market is one in which the solid-state scientist, circuit designer, system engineer and technical manager are cognizant of those considerations and requirements that influence each other's function. This book provides the reader with a comprehensive review of PHEMT technology, including materials, fabrication and processing, device physics, CAD tools and modelling, monolithic integrated circuit technology and applications. Readers with a broad range of specialities in one or more of the areas of materials, processing, device physics, circuit design, system design and marketing will be introduced quickly to important basic concepts and techniques. The specialist who has specific PHEMT experience will benefit from the broad range of topics covered and the open discussion of practical issues. Finally, the publication offers an additional benefit, in that it presents a broad scope to both the researcher and manager, both of whom must be aware and educated to remain relevant in an ever-expanding technology base.
This volume presents the application of the Monte Carlo method to the simulation of semiconductor devices, reviewing the physics of transport in semiconductors, followed by an introduction to the physics of semiconductor devices.
IDES have been realized in modulation doped AIGaAs/GaAs heterostructures by fabricating split-gate configurations and ultrafine etched structures with optimized lithography and etching techniques. With deep-mesa etching technique it is possible to prepare single and multi-layered quantum wire systems. From dc magnetotransport typical confinement energies of 2me V are determined. The FIR response is strongly governed by collective effects which give the resonances the character of local plasmon modes. In multi-layered quantum wire structures a splitting of the plasmon dispersion in longitudinal and acoustical type of layer-coupled local plasmon modes is observed. ACKNOWLEDGEMENT We would like to thank K Ploog for providing us with excellent samples and acknowledge financial support from the Bundesministerium fur Forschung und Tech- nologie, Bonn. REFERENCES 1K-F. Berggren, T. J. Thornton, D. J. Newson, and M. Pepper, Phys. Rev. Lett. 57, 1769 (1986) 2H. van Houten, B. J. van Wees, M. G. J. Heijman, J. P. Andre, D. Andrews, and G. J. Davies, Appl. Phys. Lett. 49, 1781 (1986) 3J. Cibert, P. M. Petroff, G. J. Dolan, S. J. Pearton, A. C. Gossard, and J. H. English, Appl. Phys. Lett. 49, 1275 (1986) 4T. P. Smith, III. , H. Arnot, J. M. Hong, C. M. Knoedler, S. E. Laux, and H. Schmid, Phys. Rev. Lett. 59, 2802 (1987) 5M. L. Roukes, A. Scherer, S. J. Allen, Jr. , H. G. Craighead, R. M. Ruthen, E. D. Beebe, and J. P. Harbison, Phys. Rev. Lett.
High Speed Optical Communications provides a comprehensive coverage of the design and modelling of the devices and systems required for optical communication networks. It will prove to be the essential reference text for those engineers implementing and designing such networks and is one of the few works dealing with modelling and simulation of optical links at the levels both of devices and of systems. Simulation experiments and results are included, as are details of devices currently under development in research laboratories. * Covers both the technical details of optical devices and their behaviour in complex systems; * Includes results of applications experiments. Optical and telecommuntications scientists working in research and development and design engineers working in the field will find this text to be an indispensable resource.
PHEMT devices and their incorporation into advanced monolithic integrated circuits is the enabling technology for modern microwave/millimeter wave system applications. Although still in its infancy, PHEMT MIMIC technology is already finding applications in both military and commercial systems, including radar, communication and automotive technologies. The successful team in a globally competitive market is one in which the solid-state scientist, circuit designer, system engineer and technical manager are cognizant of those considerations and requirements that influence each other's function. This book provides the reader with a comprehensive review of PHEMT technology, including materials, fabrication and processing, device physics, CAD tools and modelling, monolithic integrated circuit technology and applications. Readers with a broad range of specialities in one or more of the areas of materials, processing, device physics, circuit design, system design and marketing will be introduced quickly to important basic concepts and techniques. The specialist who has specific PHEMT experience will benefit from the broad range of topics covered and the open discussion of practical issues. Finally, the publication offers an additional benefit, in that it presents a broad scope to both the researcher and manager, both of whom must be aware and educated to remain relevant in an ever-expanding technology base.
The application of the Monte Carlo method to the simulation of semiconductor devices is presented. A review of the physics of transport in semiconductors is given, followed by an introduction to the physics of semiconductor devices. The Monte Carlo algorithm is discussed in great details, and specific applications to the modelling of semiconductor devices are given. A comparison with traditional simulators is also presented.
|
![]() ![]() You may like...
Miss Peregrine's Home for Peculiar…
Eva Green, Asa Butterfield, …
Blu-ray disc
![]() R29 Discovery Miles 290
|