Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 12 of 12 matches in All Departments
Reasoning under uncertainty is always based on a specified language or for malism, including its particular syntax and semantics, but also on its associated inference mechanism. In the present volume of the handbook the last aspect, the algorithmic aspects of uncertainty calculi are presented. Theory has suffi ciently advanced to unfold some generally applicable fundamental structures and methods. On the other hand, particular features of specific formalisms and ap proaches to uncertainty of course still influence strongly the computational meth ods to be used. Both general as well as specific methods are included in this volume. Broadly speaking, symbolic or logical approaches to uncertainty and nu merical approaches are often distinguished. Although this distinction is somewhat misleading, it is used as a means to structure the present volume. This is even to some degree reflected in the two first chapters, which treat fundamental, general methods of computation in systems designed to represent uncertainty. It has been noted early by Shenoy and Shafer, that computations in different domains have an underlying common structure. Essentially pieces of knowledge or information are to be combined together and then focused on some particular question or domain. This can be captured in an algebraic structure called valuation algebra which is described in the first chapter. Here the basic operations of combination and focus ing (marginalization) of knowledge and information is modeled abstractly subject to simple axioms."
This book contains leading survey papers on the various aspects of Abduction, both logical and numerical approaches. Abduction is central to all areas of applied reasoning, including artificial intelligence, philosophy of science, machine learning, data mining and decision theory, as well as logic itself.
Belief change is an emerging field of artificial intelligence and information science dedicated to the dynamics of information and the present book provides a state-of-the-art picture of its formal foundations. It deals with the addition, deletion and combination of pieces of information and, more generally, with the revision, updating and fusion of knowledge bases. The book offers an extensive coverage of, and seeks to reconcile, two traditions in the kinematics of belief that often ignore each other - the symbolic and the numerical (often probabilistic) approaches. Moreover, the work encompasses both revision and fusion problems, even though these two are also commonly investigated by different communities. Finally, the book presents the numerical view of belief change, beyond the probabilistic framework, covering such approaches as possibility theory, belief functions and convex gambles. The work thus presents a unified view of belief change operators, drawing from a widely scattered literature embracing philosophical logic, artificial intelligence, uncertainty modelling and database systems. The material is a clearly organised guide to the literature on the dynamics of epistemic states, knowledge bases and uncertain information, suitable for scholars and graduate students familiar with applied logic, knowledge representation and uncertain reasoning.
We are happy to present the second volume of the Handbook of Defeasible Reasoning and Uncertainty Management Systems. Uncertainty pervades the real world and must therefore be addressed by every system that attempts to represent reality. The representation of un certainty is a major concern of philosophers, logicians, artificial intelligence researchers and computer sciencists, psychologists, statisticians, economists and engineers. The present Handbook volumes provide frontline coverage of this area. This Handbook was produced in the style of previous handbook series like the Handbook of Philosophical Logic, the Handbook of Logic in Computer Science, the Handbook of Logic in Artificial Intelligence and Logic Programming, and can be seen as a companion to them in covering the wide applications of logic and reasoning. We hope it will answer the needs for adequate representations of uncertainty. This Handbook series grew out of the ESPRIT Basic Research Project DRUMS II, where the acronym is made out of the Handbook series title. This project was financially supported by the European Union and regroups 20 major European research teams working in the general domain of uncer tainty. As a fringe benefit of the DRUMS project, the research community was able to create this Handbook series, relying on the DRUMS partici pants as the core of the authors for the Handbook together with external international experts."
As its title suggests, "Uncertainty Management in Information Systems" is a book about how information systems can be made to manage information permeated with uncertainty. This subject is at the intersection of two areas of knowledge: information systems is an area that concentrates on the design of practical systems that can store and retrieve information; uncertainty modeling is an area in artificial intelligence concerned with accurate representation of uncertain information and with inference and decision-making under conditions infused with uncertainty. New applications of information systems require stronger capabilities in the area of uncertainty management. Our hope is that lasting interaction between these two areas would facilitate a new generation of information systems that will be capable of servicing these applications. Although there are researchers in information systems who have addressed themselves to issues of uncertainty, as well as researchers in uncertainty modeling who have considered the pragmatic demands and constraints of information systems, to a large extent there has been only limited interaction between these two areas. As the subtitle, "From Needs to Solutions," indicates, this book presents view points of information systems experts on the needs that challenge the uncer tainty capabilities of present information systems, and it provides a forum to researchers in uncertainty modeling to describe models and systems that can address these needs."
We are happy to present the first volume of the Handbook of Defeasible Reasoning and Uncertainty Management Systems. Uncertainty pervades the real world and must therefore be addressed by every system that attempts to represent reality. The representation of uncertainty is a ma jor concern of philosophers, logicians, artificial intelligence researchers and com puter sciencists, psychologists, statisticians, economists and engineers. The present Handbook volumes provide frontline coverage of this area. This Handbook was produced in the style of previous handbook series like the Handbook of Philosoph ical Logic, the Handbook of Logic in Computer Science, the Handbook of Logic in Artificial Intelligence and Logic Programming, and can be seen as a companion to them in covering the wide applications of logic and reasoning. We hope it will answer the needs for adequate representations of uncertainty. This Handbook series grew out of the ESPRIT Basic Research Project DRUMS II, where the acronym is made out of the Handbook series title. This project was financially supported by the European Union and regroups 20 major European research teams working in the general domain of uncertainty. As a fringe benefit of the DRUMS project, the research community was able to create this Hand book series, relying on the DRUMS participants as the core of the authors for the Handbook together with external international experts."
Belief change is an emerging field of artificial intelligence and information science dedicated to the dynamics of information and the present book provides a state-of-the-art picture of its formal foundations. It deals with the addition, deletion and combination of pieces of information and, more generally, with the revision, updating and fusion of knowledge bases. The book offers an extensive coverage of, and seeks to reconcile, two traditions in the kinematics of belief that often ignore each other - the symbolic and the numerical (often probabilistic) approaches. Moreover, the work encompasses both revision and fusion problems, even though these two are also commonly investigated by different communities. Finally, the book presents the numerical view of belief change, beyond the probabilistic framework, covering such approaches as possibility theory, belief functions and convex gambles. The work thus presents a unified view of belief change operators, drawing from a widely scattered literature embracing philosophical logic, artificial intelligence, uncertainty modelling and database systems. The material is a clearly organised guide to the literature on the dynamics of epistemic states, knowledge bases and uncertain information, suitable for scholars and graduate students familiar with applied logic, knowledge representation and uncertain reasoning.
As its title suggests, "Uncertainty Management in Information Systems" is a book about how information systems can be made to manage information permeated with uncertainty. This subject is at the intersection of two areas of knowledge: information systems is an area that concentrates on the design of practical systems that can store and retrieve information; uncertainty modeling is an area in artificial intelligence concerned with accurate representation of uncertain information and with inference and decision-making under conditions infused with uncertainty. New applications of information systems require stronger capabilities in the area of uncertainty management. Our hope is that lasting interaction between these two areas would facilitate a new generation of information systems that will be capable of servicing these applications. Although there are researchers in information systems who have addressed themselves to issues of uncertainty, as well as researchers in uncertainty modeling who have considered the pragmatic demands and constraints of information systems, to a large extent there has been only limited interaction between these two areas. As the subtitle, "From Needs to Solutions," indicates, this book presents view points of information systems experts on the needs that challenge the uncer tainty capabilities of present information systems, and it provides a forum to researchers in uncertainty modeling to describe models and systems that can address these needs."
We are happy to present the first volume of the Handbook of Defeasible Reasoning and Uncertainty Management Systems. Uncertainty pervades the real world and must therefore be addressed by every system that attempts to represent reality. The representation of uncertainty is a ma jor concern of philosophers, logicians, artificial intelligence researchers and com puter sciencists, psychologists, statisticians, economists and engineers. The present Handbook volumes provide frontline coverage of this area. This Handbook was produced in the style of previous handbook series like the Handbook of Philosoph ical Logic, the Handbook of Logic in Computer Science, the Handbook of Logic in Artificial Intelligence and Logic Programming, and can be seen as a companion to them in covering the wide applications of logic and reasoning. We hope it will answer the needs for adequate representations of uncertainty. This Handbook series grew out of the ESPRIT Basic Research Project DRUMS II, where the acronym is made out of the Handbook series title. This project was financially supported by the European Union and regroups 20 major European research teams working in the general domain of uncertainty. As a fringe benefit of the DRUMS project, the research community was able to create this Hand book series, relying on the DRUMS participants as the core of the authors for the Handbook together with external international experts."
Reasoning under uncertainty is always based on a specified language or for malism, including its particular syntax and semantics, but also on its associated inference mechanism. In the present volume of the handbook the last aspect, the algorithmic aspects of uncertainty calculi are presented. Theory has suffi ciently advanced to unfold some generally applicable fundamental structures and methods. On the other hand, particular features of specific formalisms and ap proaches to uncertainty of course still influence strongly the computational meth ods to be used. Both general as well as specific methods are included in this volume. Broadly speaking, symbolic or logical approaches to uncertainty and nu merical approaches are often distinguished. Although this distinction is somewhat misleading, it is used as a means to structure the present volume. This is even to some degree reflected in the two first chapters, which treat fundamental, general methods of computation in systems designed to represent uncertainty. It has been noted early by Shenoy and Shafer, that computations in different domains have an underlying common structure. Essentially pieces of knowledge or information are to be combined together and then focused on some particular question or domain. This can be captured in an algebraic structure called valuation algebra which is described in the first chapter. Here the basic operations of combination and focus ing (marginalization) of knowledge and information is modeled abstractly subject to simple axioms."
We are happy to present the second volume of the Handbook of Defeasible Reasoning and Uncertainty Management Systems. Uncertainty pervades the real world and must therefore be addressed by every system that attempts to represent reality. The representation of un certainty is a major concern of philosophers, logicians, artificial intelligence researchers and computer sciencists, psychologists, statisticians, economists and engineers. The present Handbook volumes provide frontline coverage of this area. This Handbook was produced in the style of previous handbook series like the Handbook of Philosophical Logic, the Handbook of Logic in Computer Science, the Handbook of Logic in Artificial Intelligence and Logic Programming, and can be seen as a companion to them in covering the wide applications of logic and reasoning. We hope it will answer the needs for adequate representations of uncertainty. This Handbook series grew out of the ESPRIT Basic Research Project DRUMS II, where the acronym is made out of the Handbook series title. This project was financially supported by the European Union and regroups 20 major European research teams working in the general domain of uncer tainty. As a fringe benefit of the DRUMS project, the research community was able to create this Handbook series, relying on the DRUMS partici pants as the core of the authors for the Handbook together with external international experts."
This book contains leading survey papers on the various aspects of Abduction, both logical and numerical approaches. Abduction is central to all areas of applied reasoning, including artificial intelligence, philosophy of science, machine learning, data mining and decision theory, as well as logic itself.
|
You may like...
|