Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
The volume "Storing and Transmitting Data" is based on Rudolf Ahlswede's introductory course on "Information Theory I" and presents an introduction to Shannon Theory. Readers, familiar or unfamiliar with the technical intricacies of Information Theory, will benefit considerably from working through the book; especially Chapter VI with its lively comments and uncensored insider views from the world of science and research offers informative and revealing insights. This is the first of several volumes that will serve as a collected research documentation of Rudolf Ahlswede's lectures on information theory. Each volume includes comments from an invited well-known expert. Holger Boche contributed his insights in the supplement of the present volume. Classical information processing concerns the main tasks of gaining knowledge, storage, transmitting and hiding data. The first task is the prime goal of Statistics. For the two next, Shannon presented an impressive mathematical theory called Information Theory, which he based on probabilistic models. The theory largely involves the concept of codes with small error probabilities in spite of noise in the transmission, which is modeled by channels. The lectures presented in this work are suitable for graduate students in Mathematics, and also in Theoretical Computer Science, Physics, and Electrical Engineering with background in basic Mathematics. The lectures can be used as the basis for courses or to supplement courses in many ways. Ph.D. students will also find research problems, often with conjectures, that offer potential subjects for a thesis. More advanced researchers may find the basis of entire research programs.
Devoted to information security, this volume begins with a short course on cryptography, mainly based on lectures given by Rudolf Ahlswede at the University of Bielefeld in the mid 1990s. It was the second of his cycle of lectures on information theory which opened with an introductory course on basic coding theorems, as covered in Volume 1 of this series. In this third volume, Shannon's historical work on secrecy systems is detailed, followed by an introduction to an information-theoretic model of wiretap channels, and such important concepts as homophonic coding and authentication. Once the theoretical arguments have been presented, comprehensive technical details of AES are given. Furthermore, a short introduction to the history of public-key cryptology, RSA and El Gamal cryptosystems is provided, followed by a look at the basic theory of elliptic curves, and algorithms for efficient addition in elliptic curves. Lastly, the important topic of "oblivious transfer" is discussed, which is strongly connected to the privacy problem in communication. Today, the importance of this problem is rapidly increasing, and further research and practical realizations are greatly anticipated. This is the third of several volumes serving as the collected documentation of Rudolf Ahlswede's lectures on information theory. Each volume includes comments from an invited well-known expert. In the supplement to the present volume, Rudiger Reischuk contributes his insights. Classical information processing concerns the main tasks of gaining knowledge and the storage, transmission and hiding of data. The first task is the prime goal of Statistics. For transmission and hiding data, Shannon developed an impressive mathematical theory called Information Theory, which he based on probabilistic models. The theory largely involves the concept of codes with small error probabilities in spite of noise in the transmission, which is modeled by channels. The lectures presented in this work are suitable for graduate students in Mathematics, and also for those working in Theoretical Computer Science, Physics, and Electrical Engineering with a background in basic Mathematics. The lectures can be used as the basis for courses or to supplement courses in many ways. Ph.D. students will also find research problems, often with conjectures, that offer potential subjects for a thesis. More advanced researchers may find questions which form the basis of entire research programs.
The calculation of channel capacities was one of Rudolf Ahlswede's specialties and is the main topic of this second volume of his Lectures on Information Theory. Here we find a detailed account of some very classical material from the early days of Information Theory, including developments from the USA, Russia, Hungary and (which Ahlswede was probably in a unique position to describe) the German school centered around his supervisor Konrad Jacobs. These lectures made an approach to a rigorous justification of the foundations of Information Theory. This is the second of several volumes documenting Rudolf Ahlswede's lectures on Information Theory. Each volume includes comments from an invited well-known expert. In the supplement to the present volume, Gerhard Kramer contributes his insights. Classical information processing concerns the main tasks of gaining knowledge and the storage, transmission and hiding of data. The first task is the prime goal of Statistics. For transmission and hiding data, Shannon developed an impressive mathematical theory called Information Theory, which he based on probabilistic models. The theory largely involves the concept of codes with small error probabilities in spite of noise in the transmission, which is modeled by channels. The lectures presented in this work are suitable for graduate students in Mathematics, and also for those working in Theoretical Computer Science, Physics, and Electrical Engineering with a background in basic Mathematics. The lectures can be used as the basis for courses or to supplement courses in many ways. Ph.D. students will also find research problems, often with conjectures, that offer potential subjects for a thesis. More advanced researchers may find questions which form the basis of entire research programs.
The fifth volume of Rudolf Ahlswede's lectures on Information Theory focuses on several problems that were at the heart of a lot of his research. One of the highlights of the entire lecture note series is surely Part I of this volume on arbitrarily varying channels (AVC), a subject in which Ahlswede was probably the world's leading expert. Appended to Part I is a survey by Holger Boche and Ahmed Mansour on recent results concerning AVC and arbitrarily varying wiretap channels (AVWC). After a short Part II on continuous data compression, Part III, the longest part of the book, is devoted to distributed information. This Part includes discussions on a variety of related topics; among them let us emphasize two which are famously associated with Ahlswede: "multiple descriptions", on which he produced some of the best research worldwide, and "network coding", which had Ahlswede among the authors of its pioneering paper. The final Part IV on "Statistical Inference under Communication constraints" is mainly based on Ahlswede's joint paper with Imre Csiszar, which received the Best Paper Award of the IEEE Information Theory Society. The lectures presented in this work, which consists of 10 volumes, are suitable for graduate students in Mathematics, and also for those working in Theoretical Computer Science, Physics, and Electrical Engineering with a background in basic Mathematics. The lectures can be used either as the basis for courses or to supplement them in many ways. Ph.D. students will also find research problems, often with conjectures, that offer potential subjects for a thesis. More advanced researchers may find questions which form the basis of entire research programs.
Devoted to information security, this volume begins with a short course on cryptography, mainly based on lectures given by Rudolf Ahlswede at the University of Bielefeld in the mid 1990s. It was the second of his cycle of lectures on information theory which opened with an introductory course on basic coding theorems, as covered in Volume 1 of this series. In this third volume, Shannon's historical work on secrecy systems is detailed, followed by an introduction to an information-theoretic model of wiretap channels, and such important concepts as homophonic coding and authentication. Once the theoretical arguments have been presented, comprehensive technical details of AES are given. Furthermore, a short introduction to the history of public-key cryptology, RSA and El Gamal cryptosystems is provided, followed by a look at the basic theory of elliptic curves, and algorithms for efficient addition in elliptic curves. Lastly, the important topic of "oblivious transfer" is discussed, which is strongly connected to the privacy problem in communication. Today, the importance of this problem is rapidly increasing, and further research and practical realizations are greatly anticipated. This is the third of several volumes serving as the collected documentation of Rudolf Ahlswede's lectures on information theory. Each volume includes comments from an invited well-known expert. In the supplement to the present volume, Rudiger Reischuk contributes his insights. Classical information processing concerns the main tasks of gaining knowledge and the storage, transmission and hiding of data. The first task is the prime goal of Statistics. For transmission and hiding data, Shannon developed an impressive mathematical theory called Information Theory, which he based on probabilistic models. The theory largely involves the concept of codes with small error probabilities in spite of noise in the transmission, which is modeled by channels. The lectures presented in this work are suitable for graduate students in Mathematics, and also for those working in Theoretical Computer Science, Physics, and Electrical Engineering with a background in basic Mathematics. The lectures can be used as the basis for courses or to supplement courses in many ways. Ph.D. students will also find research problems, often with conjectures, that offer potential subjects for a thesis. More advanced researchers may find questions which form the basis of entire research programs.
The calculation of channel capacities was one of Rudolf Ahlswede's specialties and is the main topic of this second volume of his Lectures on Information Theory. Here we find a detailed account of some very classical material from the early days of Information Theory, including developments from the USA, Russia, Hungary and (which Ahlswede was probably in a unique position to describe) the German school centered around his supervisor Konrad Jacobs. These lectures made an approach to a rigorous justification of the foundations of Information Theory. This is the second of several volumes documenting Rudolf Ahlswede's lectures on Information Theory. Each volume includes comments from an invited well-known expert. In the supplement to the present volume, Gerhard Kramer contributes his insights. Classical information processing concerns the main tasks of gaining knowledge and the storage, transmission and hiding of data. The first task is the prime goal of Statistics. For transmission and hiding data, Shannon developed an impressive mathematical theory called Information Theory, which he based on probabilistic models. The theory largely involves the concept of codes with small error probabilities in spite of noise in the transmission, which is modeled by channels. The lectures presented in this work are suitable for graduate students in Mathematics, and also for those working in Theoretical Computer Science, Physics, and Electrical Engineering with a background in basic Mathematics. The lectures can be used as the basis for courses or to supplement courses in many ways. Ph.D. students will also find research problems, often with conjectures, that offer potential subjects for a thesis. More advanced researchers may find questions which form the basis of entire research programs.
The volume “Storing and Transmitting Data” is based on Rudolf Ahlswede's introductory course on "Information Theory I" and presents an introduction to Shannon Theory. Readers, familiar or unfamiliar with the technical intricacies of Information Theory, will benefit considerably from working through the book; especially Chapter VI with its lively comments and uncensored insider views from the world of science and research offers informative and revealing insights. This is the first of several volumes that will serve as a collected research documentation of Rudolf Ahlswede’s lectures on information theory. Each volume includes comments from an invited well-known expert. Holger Boche contributed his insights in the supplement of the present volume. Classical information processing concerns the main tasks of gaining knowledge, storage, transmitting and hiding data. The first task is the prime goal of Statistics. For the two next, Shannon presented an impressive mathematical theory called Information Theory, which he based on probabilistic models. The theory largely involves the concept of codes with small error probabilities in spite of noise in the transmission, which is modeled by channels. The lectures presented in this work are suitable for graduate students in Mathematics, and also in Theoretical Computer Science, Physics, and Electrical Engineering with background in basic Mathematics. The lectures can be used as the basis for courses or to supplement courses in many ways. Ph.D. students will also find research problems, often with conjectures, that offer potential subjects for a thesis. More advanced researchers may find the basis of entire research programs.
This book constitutes the thoroughly refereed research papers contributed to a research project on the General Theory of Information Transfer and Combinatorics' that was hosted from 2001-2004 at the Center for Interdisciplinary Research (ZIF) of Bielefeld University and also papers of several incorporated meetings thereof. The 63 revised full papers presented were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections on probabilistic models, cryptology, pseudo random sequences, quantum models, statistics, probability theory, information measures, error concepts, performance criteria, search, sorting, ordering, planning, language evolution, pattern discovery, reconstructions, network coding, combinatorial models, and a problem section.
The lectures concentrate on highlights in Combinatorial (ChaptersII and III) and Number Theoretical (ChapterIV) Extremal Theory, in particular on the solution of famous problems which were open for many decades. However, the organization of the lectures in six chapters does neither follow the historic developments nor the connections between ideas in several cases. With the speci?ed auxiliary results in ChapterI on Probability Theory, Graph Theory, etc., all chapters can be read and taught independently of one another. In addition to the 16 lectures organized in 6 chapters of the main part of the book, there is supplementary material for most of them in the Appendix. In parti- lar, there are applications and further exercises, research problems, conjectures, and even research programs. The following books and reports [B97], [ACDKPSWZ00], [A01], and [ABCABDM06], mostly of the authors, are frequently cited in this book, especially in the Appendix, and we therefore mark them by short labels as [B], [N], [E], and [G]. We emphasize that there are also "Exercises" in [B], a "Problem Section" with contributions by several authors on pages 1063-1105 of [G], which are often of a combinatorial nature, and "Problems and Conjectures" on pages 172-173 of [E].
In den vergangenen drei Jahrzehnten findet man sowohl in theo retisch ausgerichteten als auch in anwendungsorientierten Zeit schriften in zunehmendem Masse Beitrage zum Thema "Suchen." Dabei ist auffallend, dass sehr verschiedenartige Probleme als Suchpro bleme klassifiziert werden und dass Forscher der verschiedenen Fach richtungen haufig sehr wenig uber Ergebnisse, die in ihnen nicht vertrauten Gebieten erzielt wurden, informiert sind. Mit diesem Buch wird ein Versuch unternommen, das umfangreiche Material so darzustellen, dass dem Leser ein schneller Einstieg in den Fragenkreis und ein moglichst umfassender Uberblick ermoglicht wird. Es war unser Ziel, die wesentlichen Arbeiten auf dem Gebiet nach neuestem Stand zu behandeln, aber wir erheben keinen Anspruch auf Vollstandigkeit in irgendeinem Sinne, da schon der Rahmen dieses Buches einem solchen Verlangen nicht gerecht werden kann. Bei einigen Arbeiten, die es an sich verdient hatten, ausfuhrlich dargestellt zu werden, haben wir uns deshalb auf die Angabe ihrer Ergebnisse beschrankt. Der interessierte Forscher wird so in den Stand versetzt, sich seinen Weg durch die Literatur selbst zu bahnen. Das Buch durfte fur den Experten als Nachschlagewerk nutz lich sein. Aber unser Hauptanliegen ist es, jedem Leser mit der Bereit schaft und der Fahigkeit zu abstraktem, formalen Denken einen Zu gang zu den grundlegenden Ideen, Methoden und Resultaten des Ge bietes zu ermoglichen, die noch nicht in Buchern erschienen sind, aber von ihrer Bedeutung her eine weitere Verbreitung verdienen."
|
You may like...
|