![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
The theory of numbers continues to occupy a central place in modern mathematics because of both its long history over many centuries as well as its many diverse applications to other fields such as discrete mathematics, cryptography, and coding theory. The proof by Andrew Wiles (with Richard Taylor) of Fermat's last theorem published in 1995 illustrates the high level of difficulty of problems encountered in number-theoretic research as well as the usefulness of the new ideas arising from its proof. The thirteenth conference of the Canadian Number Theory Association was held at Carleton University, Ottawa, Ontario, Canada from June 16 to 20, 2014. Ninety-nine talks were presented at the conference on the theme of advances in the theory of numbers. Topics of the talks reflected the diversity of current trends and activities in modern number theory. These topics included modular forms, hypergeometric functions, elliptic curves, distribution of prime numbers, diophantine equations, L-functions, Diophantine approximation, and many more. This volume contains some of the papers presented at the conference. All papers were refereed. The high quality of the articles and their contribution to current research directions make this volume a must for any mathematics library and is particularly relevant to researchers and graduate students with an interest in number theory. The editors hope that this volume will serve as both a resource and an inspiration to future generations of researchers in the theory of numbers.
The theory of numbers continues to occupy a central place in modern mathematics because of both its long history over many centuries as well as its many diverse applications to other fields such as discrete mathematics, cryptography, and coding theory. The proof by Andrew Wiles (with Richard Taylor) of Fermat's last theorem published in 1995 illustrates the high level of difficulty of problems encountered in number-theoretic research as well as the usefulness of the new ideas arising from its proof. The thirteenth conference of the Canadian Number Theory Association was held at Carleton University, Ottawa, Ontario, Canada from June 16 to 20, 2014. Ninety-nine talks were presented at the conference on the theme of advances in the theory of numbers. Topics of the talks reflected the diversity of current trends and activities in modern number theory. These topics included modular forms, hypergeometric functions, elliptic curves, distribution of prime numbers, diophantine equations, L-functions, Diophantine approximation, and many more. This volume contains some of the papers presented at the conference. All papers were refereed. The high quality of the articles and their contribution to current research directions make this volume a must for any mathematics library and is particularly relevant to researchers and graduate students with an interest in number theory. The editors hope that this volume will serve as both a resource and an inspiration to future generations of researchers in the theory of numbers.
Algebraic number theory is a subject which came into being through the attempts of mathematicians to try to prove Fermat's last theorem and which now has a wealth of applications to diophantine equations, cryptography, factoring, primality testing and public-key cryptosystems. This book provides an introduction to the subject suitable for senior undergraduates and beginning graduate students in mathematics. The material is presented in a straightforward, clear and elementary fashion, and the approach is hands on, with an explicit computational flavour. Prerequisites are kept to a minimum, and numerous examples illustrating the material occur throughout the text. References to suggested reading and to the biographies of mathematicians who have contributed to the development of algebraic number theory are given at the end of each chapter. There are over 320 exercises, an extensive index, and helpful location guides to theorems and lemmas in the text.
Algebraic number theory is a subject which came into being through the attempts of mathematicians to try to prove Fermat's last theorem and which now has a wealth of applications to diophantine equations, cryptography, factoring, primality testing and public-key cryptosystems. This book provides an introduction to the subject suitable for senior undergraduates and beginning graduate students in mathematics. The material is presented in a straightforward, clear and elementary fashion, and the approach is hands on, with an explicit computational flavour. Prerequisites are kept to a minimum, and numerous examples illustrating the material occur throughout the text. References to suggested reading and to the biographies of mathematicians who have contributed to the development of algebraic number theory are given at the end of each chapter. There are over 320 exercises, an extensive index, and helpful location guides to theorems and lemmas in the text.
|
![]() ![]() You may like...
Hyperthermia In Cancer Treatment: A…
Gian F. Baronzio, E. Dieter Hager
Hardcover
R6,540
Discovery Miles 65 400
Loodglaskuns - Eietydse loodglaskuns…
Gail Brown, Jacqui Holmes
Paperback
|