![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
People have a hard time communicating, and also have a hard time
finding business knowledge in the environment. With the
sophistication of search technologies like Google, business people
expect to be able to get their questions answered about the
business just like you can do an internet search. The truth is,
knowledge management is primitive today, and it is due to the fact
that we have poor business metadata management.
Die Client/Server Umgebung ist verf}hrerisch. Anders als in Mainframe-Umgebungen besitzt der Systementwickler hier vollst{ndige Kontrolle }ber Entwicklung und Ausf}hrung der Anwendungen. Da aber Richtlinien und Prinzipien wie in der Gro rechner-Umgebung fehlen, vollziehtsich die System-Planung dabei oft sehr nachl{ssig. Je gr- er die Client/Server Umgebung wird, desto chaotischer kann sie werden. In seinem Buch "Client/Server Anwendungen" definiert W.H. Inmon Richtlinien undPrinzipien der Systementwicklung, die in einer solchen Umgebung gelten sollten - wie sie aussehen, wie man sie implementiert und was geschieht, wenn man sie nicht ber}cksichtigt. Er entwickelt eine Architektur, die auf alle Client/Server Umgebungen }bertragbar ist. Es werden praktische L-sungen angeboten, die dazu verhelfen, duchdachte und stabile Client/Server Anwendungen zu entwickeln. Von ihnen werden Systemprogrammierer ebenso wie Anwender profitieren.
Over the past 5 years, the concept of big data has matured, data science has grown exponentially, and data architecture has become a standard part of organizational decision-making. Throughout all this change, the basic principles that shape the architecture of data have remained the same. There remains a need for people to take a look at the "bigger picture" and to understand where their data fit into the grand scheme of things. Data Architecture: A Primer for the Data Scientist, Second Edition addresses the larger architectural picture of how big data fits within the existing information infrastructure or data warehousing systems. This is an essential topic not only for data scientists, analysts, and managers but also for researchers and engineers who increasingly need to deal with large and complex sets of data. Until data are gathered and can be placed into an existing framework or architecture, they cannot be used to their full potential. Drawing upon years of practical experience and using numerous examples and case studies from across various industries, the authors seek to explain this larger picture into which big data fits, giving data scientists the necessary context for how pieces of the puzzle should fit together.
Preventing Litigation, for the first time, explains how to build an early warning system to identify the risk of litigation before the damage is done, and proves that there is big value in less litigation. The authors are subject matter experts, one in litigation, the other in computer science, and each has more than four decades of training and experience in their respective fields. Together, they present a way forward to a transformative revolution for the slow-moving world of law for the benefit of the fast- paced environment of the business world.
|
![]() ![]() You may like...
European Air Law and Policy: Recent…
P.D. Dagtoglou, S. Unger
Hardcover
R5,967
Discovery Miles 59 670
Securing the Internet of Things…
Information Reso Management Association
Hardcover
R11,789
Discovery Miles 117 890
Skin We Are In - A Celebration Of The…
Sindiwe Magona, Nina G. Jablonski
Paperback
R159
Discovery Miles 1 590
|